Enunciation of embryonic palm oil clinker based geopolymer concrete and its engineering properties

2022 ◽  
Vol 318 ◽  
pp. 125975
Author(s):  
Iftekhair Ibnul Bashar ◽  
U. Johnson Alengaram ◽  
Mohd Zamin Jumaat
2016 ◽  
Vol 111 ◽  
pp. 286-297 ◽  
Author(s):  
Iftekhair Ibnul Bashar ◽  
U. Johnson Alengaram ◽  
Mohd Zamin Jumaat ◽  
Azizul Islam ◽  
Helen Santhi ◽  
...  

2020 ◽  
Vol 18 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Ahmad B. Malkawi ◽  
Maan Habib ◽  
Jamal Aladwan ◽  
Yazan Alzubi

2021 ◽  
Vol 1136 (1) ◽  
pp. 012046
Author(s):  
Bala Gopal Adapala ◽  
Durga Chaitanya Kumar Jagarapu ◽  
Syed Hamim Jeelani ◽  
B. Sarath Chandra Kumar ◽  
Arunakanthi Eluru

2020 ◽  
Vol 10 (21) ◽  
pp. 7726
Author(s):  
An Thao Huynh ◽  
Quang Dang Nguyen ◽  
Qui Lieu Xuan ◽  
Bryan Magee ◽  
TaeChoong Chung ◽  
...  

Geopolymer concrete offers a favourable alternative to conventional Portland concrete due to its reduced embodied carbon dioxide (CO2) content. Engineering properties of geopolymer concrete, such as compressive strength, are commonly characterised based on experimental practices requiring large volumes of raw materials, time for sample preparation, and costly equipment. To help address this inefficiency, this study proposes machine learning-assisted numerical methods to predict compressive strength of fly ash-based geopolymer (FAGP) concrete. Methods assessed included artificial neural network (ANN), deep neural network (DNN), and deep residual network (ResNet), based on experimentally collected data. Performance of the proposed approaches were evaluated using various statistical measures including R-squared (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE). Sensitivity analysis was carried out to identify effects of the following six input variables on the compressive strength of FAGP concrete: sodium hydroxide/sodium silicate ratio, fly ash/aggregate ratio, alkali activator/fly ash ratio, concentration of sodium hydroxide, curing time, and temperature. Fly ash/aggregate ratio was found to significantly affect compressive strength of FAGP concrete. Results obtained indicate that the proposed approaches offer reliable methods for FAGP design and optimisation. Of note was ResNet, which demonstrated the highest R2 and lowest RMSE and MAPE values.


2016 ◽  
Vol 692 ◽  
pp. 129-137
Author(s):  
Shravan Kumar ◽  
Kolli Ramujee

Fly ash–based geopolymer concrete (GPC) comprised of fly ash, Fine aggregate, coarse aggregate, and an alkaline solution, which is a combination of sodium hydroxide and sodium silicate, can play a significant role with respect to environmental control of greenhouse effects. The reduction in the carbon dioxide emission from cement production can contribute significantly to global temperature reduction. Current studies on geopolymer concrete are primarily focused on geopolymer technology to prepare fly ash–based geopolymer concrete and its Engineering properties determination. However, no specific publications are available with respect to the durability of geopolymer concrete in the marine environment. Corrosion of reinforcing steel due to chloride ingress ion is one of the most common environmental attacks that lead to the deterioration of concrete structures. Therefore, wherever there is a potential risk of chloride induced corrosion, the concrete should be evaluated for chloride permeability. This paper describes an durability testing program, based on Rapid chloride permeability test technique to measure the chloride permeability of in-place concrete. To investigate the durability performance of geopolymer fly ash–based concretes and OPC concretes that have been subjected to natural seawater exposure. A series of 100x50mm specimen were cut from the 100x200mm cylinders of both GPC & OPC to fit them into the test set up. The test results indicated excellent resistance of the geopolymer concrete (GPC) to chloride ingress ion with a less charge passed through them relative to ordinary Portland cement (OPC concrete)


2021 ◽  
Vol 1019 ◽  
pp. 73-81
Author(s):  
A. Chithambar Ganesh ◽  
J. Sivasubramanaian ◽  
Mahalingam Sesha Seshamahalingam ◽  
J. Millar ◽  
V. Jayanth Kumar

Due to the elevating demand to replace the conventional cement concrete with any other building material, there has been a continuous effort to promote the properties of geopolymer concrete. The objective of this paper is to reduce the brittleness of geopolymer concrete. This research paper goes for exploring the impact of high and low young’s modulus fiber in geopolymer concrete made of M-sand. Mix proportion of various materials is based on the Rangan’s proposed Mix design. Geopolymer concrete used in this investigation is the Fly ash – Ground Granulated Blast Furnace Slag blend based. Concoction of NaOH solution and Na2SiO3 solution is used as the alkali solution. Sine 80 percent of the source material is flyash, the specimens are exposed to heat curing. Fresh property and hardened characteristics like workability, ductility factor, compressive, split tensile, flexural and impact strength are assessed in this study. Significant increase in the engineering properties is observed with respect to both the fibers. This work unveils lot of potential in the vicinity of Geopolymer concrete.


2021 ◽  
Vol 5 (8) ◽  
pp. 203
Author(s):  
V. Sathish Kumar ◽  
N. Ganesan ◽  
P. V. Indira

The primary aim of this research is to find an alternative for Portland cement using inorganic geopolymers. This study investigated the effect of steel and polypropylene fibres hybridisation on ternary blend geopolymer concrete (TGPC) engineering properties using fly ash, ground granulated blast furnace slag (GGBS) and metakaolin as the source materials. The properties like compressive strength, splitting tensile strength, flexural strength and modulus of elasticity of ternary blend geopolymer concrete. The standard tests were conducted on TGPC with steel fibres, polypropylene fibres and a combination of steel and polypropylene fibres in hybrid form. A total number of 45 specimens were tested and compared to determine each property. The grade of concrete considered was M55. The variables studied were the volume fraction of fibres, viz. steel fibres (0%, 0.5% and 1%) and polypropylene fibres (0%, 0.1%, 0.15%, 0.2% and 0.25%). The experimental results reveal that the addition of fibres in a hybrid form enhances the mechanical properties of TGPC. The increase in the compressive strength was nominal, and a significant improvement was observed in splitting tensile strength, flexural strength, and modulus of elasticity. Also, an attempt to obtain the relation between the different engineering properties was made with different volume fractions of fibre.


Sign in / Sign up

Export Citation Format

Share Document