Electronic structure and binding energy relaxation of ScZr atomic alloying

2016 ◽  
Vol 657 ◽  
pp. 177-183
Author(s):  
Maolin Bo ◽  
Yongling Guo ◽  
Xuexian Yang ◽  
Junjie He ◽  
Yonghui Liu ◽  
...  
2007 ◽  
Vol 06 (05) ◽  
pp. 353-356
Author(s):  
A. I. YAKIMOV ◽  
A. V. DVURECHENSKII ◽  
A. I. NIKIFOROV ◽  
A. A. BLOSHKIN

Space-charge spectroscopy was employed to study electronic structure in a stack of four layers of Ge quantum dots coherently embedded in an n-type Si (001) matrix. Evidence for an electron confinement in the vicinity of Ge dots was found. From the frequency-dependent measurements the electron binding energy was determined to be ~50 meV, which is consistent with the results of numerical analysis. The data are explained by a modification of the conduction band alignment induced by inhomogeneous tensile strain in Si around the buried Ge dots.


2000 ◽  
Vol 5 (S1) ◽  
pp. 287-293
Author(s):  
J. A. Chisholm ◽  
P. D. Bristowe

We report on the interaction of native point defects with commonly observed planar defects in GaN. Using a pair potential model we find a positive binding energy for all native defects to the three boundary structures investigated indicating a preference for native defects to form in these interfaces. The binding energy is highest for the Ga interstitial and lowest for vacancies. Interstitials, which are not thought to occur in significant concentrations in bulk GaN, should form in the (11 0) IDB and the (10 0) SMB and consequently alter the electronic structure of these boundaries.


1994 ◽  
Vol 01 (04) ◽  
pp. 649-653 ◽  
Author(s):  
A.J. PATCHETT ◽  
S.S. DHESI ◽  
R.I.R. BLYTH ◽  
S.D. BARRETT

An intense photoemission feature is observed at a binding energy of ~10 eV in the UV photoemission spectra from the (0001) surfaces of bulk single crystals of rare-earth metals. This emission cannot be explained in terms of ground state electronic structure and we have been unable to attribute its existence to the presence of contamination of the surface. We present some evidence that may indicate its origin lies in the creation, by the photoemission process, of a metastable two-hole final state.


2004 ◽  
Vol 11 (02) ◽  
pp. 191-198 ◽  
Author(s):  
V. V. ATUCHIN ◽  
L. D. POKROVSKY ◽  
V. G. KESLER ◽  
N. YU. MAKLAKOVA ◽  
V. I. VORONKOVA ◽  
...  

X-ray photoemission spectroscopy (XPS) measurements have been executed for TlTiOPO 4 to elucidate the general features in the electronic structure of the KTiOPO 4 family compounds. The peculiarities of the valence band structure have been discussed for the crystals. The persistence of core level binding energy differences O 1s–P 2p and O 1s–Ti 2p 3/2 has been detected in TlTiOPO 4 and KTiOPO 4, which relates well with the constancy of averaged P – O and Ti – O chemical bond lengths in this crystal family. The superstructure ordering of the TlTiOPO 4 surface subjected to polishing and annealing has been detected by reflectance high energy electron diffraction (RHEED). From comparison of surface crystallographic properties of TlTiOPO 4 and KTiOPO 4, the most typical superstructure indices have been revealed.


2017 ◽  
Vol 1 (1) ◽  
pp. 41-50
Author(s):  
Fatma Yilmazer ◽  
Yusuf Yakar ◽  
Bekir Cakir ◽  
Ayhan Ozmen

1999 ◽  
Vol 06 (06) ◽  
pp. 1151-1157 ◽  
Author(s):  
L. DUDA ◽  
L. S. O. JOHANSSON ◽  
B. REIHL ◽  
H. W. YEOM ◽  
S. HARA ◽  
...  

We have investigated the electronic structure of the single-domain 3C–SiC(001)(2×1) using angle-resolved photoemission and synchrotron radiation. Two different surface-state bands are clearly identified within the bulk bandgap. The upper band has a binding energy of 1.4 eV at the center of the surface Brillouin zone (SBZ) and shows a weak dispersion of 0.3 eV in the [Formula: see text] direction, but is nondispersive in the perpendicular direction. It has a polarization dependence suggesting a pz character, as expected for a Si dangling-bond state. The second band is located at 2.4 eV binding energy and is nondispersive. The weak or nonexistent dispersions suggest very localized electronic states at the surface and show poor agreement with calculated dispersions for the proposed models for the 2×1 and c(4×2) reconstructions.


2010 ◽  
Vol 114 (39) ◽  
pp. 16832-16836 ◽  
Author(s):  
S. B. Gesari ◽  
M. E. Pronsato ◽  
A. Visintin ◽  
A. Juan

Sign in / Sign up

Export Citation Format

Share Document