Efficacy of diatomaceous earth to control Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) in rough rice: Impacts of temperature and relative humidity

2007 ◽  
Vol 26 (7) ◽  
pp. 923-929 ◽  
Author(s):  
Yaowaluk Chanbang ◽  
Frank H. Arthur ◽  
Gerald E. Wilde ◽  
James E. Throne
2008 ◽  
Vol 15 (5) ◽  
pp. 455-460 ◽  
Author(s):  
Yaowaluk Chanbang ◽  
Frank H. Arthur ◽  
Gerald E. Wilde ◽  
James E. Throne

Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 613 ◽  
Author(s):  
Ivan Paponja ◽  
Vlatka Rozman ◽  
Anita Liška

Diatomaceous earth (DE) has long been known as a potential protectant for stored cereals against various stored product insects. Despite favorable effect for the environment and human health, DE has some negative side effects on the treated commodity. In order to minimize negative response and to improve its efficacy, this paper represents a study of developed natural formulation based on DE SilicoSec® enhanced with botanicals (essential oil lavender, corn oil, and bay leaves dust) and silica gel. The activity of formulation (labeled as N Form) was tested against Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Tribolium castaneum (Herbst) in seed wheat and barley under controlled conditions. As a reference comparative value, DE SilicoSec® was used. N Form showed higher efficacy than DE, especially in barley at the lowest concentration, inducing higher mortality of all three insect species. The highest average progeny inhibition was recorded in R. dominica population both in seed wheat and barley with 94.9% and 96.3% of inhibition, respectively, followed with S. oryzae and T. castaneum inhibition of 90.6% and 86.1%, respectively, in wheat and 94.9% and 89.7%, respectively, in barley. Results indicate that the developed natural formulation N Form enhanced the activity of DE SilicoSec® using lower amount of DE dust and that it could be successfully implemented for storage of cereals as alternatives to chemical pesticides for stored product insect control.


2015 ◽  
Vol 365 ◽  
pp. 77-81 ◽  
Author(s):  
J.V. Silva ◽  
E.M.A. Pereira ◽  
T.H.F. Andrade ◽  
Antônio Gilson Barbosa de Lima

This paper aims to present an experimental study of rough rice (BRSMG CONAI cultivar) drying by using a stationary method. The grain was dried in an oven with air mechanical movement under controlled conditions of velocity, temperature and relative humidity. In order to obtain balanced moisture content, the samples studied were kept at 40 and 70°C. Results of the drying and heating kinetics of the grain during the process are shown and analyzed. It was found that higher drying rate and lower time for drying as higher air temperature (70°C) is used. It can be concluded that the reduction of the moisture content of the grain, is considered very complex and, depending on the method and drying conditions, can substantially provokes breaking and cracks, which reduces final product quality.


1987 ◽  
Vol 27 (2) ◽  
pp. 309 ◽  
Author(s):  
JM Desmarchelier ◽  
JC Dines

The efficacy of Dryacide (diatomaceous earth coated with silica aerogels) on wheat was tested in the laboratory against adult and immature stages of 4 species of Coleoptera and against immature stages of 1 species of Lepidoptera. The minimum effective level of Dryacide increased in the following order: immature Ephestia cautella (Walker) ~ immature Tribolium castaneum (Herbst) < immature Rhyzopertha dominica (F) < adult R. dominica ~ adult T. castaneum < adult Sitophilus oryzae (L) < adult Sitophilus granarius (L) < immature Sitophilus species. When wheat treated with Dryacide was milled in the laboratory without prior cleaning, less than 3% of the Dryacide carried over into the flour. Commercial cleaning of wheat removed (�s.e.) about 98 � 1% of Dryacide, and no Dryacide could be detected in the flour. Dryacide treatment did not affect flour quality as determined by the volume of sponge cakes and the production of carbon dioxide by fermenting dough.


2020 ◽  
Vol 10 (18) ◽  
pp. 6441
Author(s):  
Georgia V. Baliota ◽  
Christos G. Athanassiou

Laboratory bioassays were conducted to evaluate the insecticidal efficacy of a diatomaceous earth deposit from Greece, for a wide range of stored product insects. In this context, populations of five different insect species, Tribolium confusum Jacquelin DuVal, the confused flour beetle; Sitophilus oryzae (L.), the rice weevil; Rhyzopertha dominica (F.), the lesser grain borer; Oryzaephilus surinamensis (L.), the sawtoothed grain beetle; Cryptolestes ferrugineus (Stephens), the rusty grain beetle, which cover a major spectrum of insects species of stored products worldwide, were used in the bioassays. The different treatment of diatomaceous earth (DE) rocks (grinding, diatomaceous enrichment, powder granulometry) led to the creation of five types of formulations (namely DE1, DE2, DE3, DE5 and DE6) that exhibited significant fluctuations in their insecticidal efficacy when applied on wheat. In general, some of the modified formulations were found to be very effective against species such as R. dominica and T. confusum that may be difficult to control at the current labeled doses of commercial DE formulations. Overall, our data clearly indicate that this specific Greek deposit has considerable insecticidal properties, which can be further utilized in designing commercial formulations for insect control at the postharvest stages of durable agricultural commodities, provided that the deposit will be modified at specific enrichment and granulometry levels.


Author(s):  
Najmeh Delgarm ◽  
Masumeh Ziaee ◽  
Alan McLaughlin

Abstract The present study was conducted to evaluate the insecticidal activity of three diatomaceous earth (DE) products, SilicoSec (Biofa GmbH, Munsingen, Germany), Protect-It (Hedley Technologies Inc., Canada), and Mamaghan. The silica aerogel was mixed to enhance the efficacy of Mamaghan DE with 10, 15, and 20% rates. The DE products were applied at treatment rates of 100, 200, and 400 ppm against adults of Tribolium confusum Jacquelin du Val. (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). In the second experiment, 0.1 and 0.5% deltamethrin was added to Mamaghan DE–10% silica aerogel to enhance the activity of the DE. Adult mortality was recorded 2, 5, 7, 10, and 14 d after exposure. Parental adults were removed after 14-d exposure time and progeny developed was evaluated after 65 d. Mamaghan–15 and 20% silica aerogel caused the highest mortality (>97%) against T. confusum after 10 d of exposure at the highest dose of 400 ppm which exceeded to 100% mortality after 14 d. However, the toxicity of Mamaghan DE against R. dominica was lower than that of the two commercial formulations at all dose rates. The presence of 0.1% deltamethrin increased the insecticidal activity of Mamaghan DE and significantly suppressed progeny production of both species. Even at the lowest dose of Mamaghan–10% + 0.1% deltamethrin, progeny production of both species was very low (four or less individuals per vial). However, no progeny was recorded in Mamaghan–10% + 0.5% deltamethrin. Thus, adding low rates of silica aerogel and deltamethrin considerably enhanced the efficacy of Mamaghan DE in controlling T. confusum and R. dominica.


2007 ◽  
Vol 43 (3) ◽  
pp. 297-301 ◽  
Author(s):  
Erika A. Vardeman ◽  
James F. Campbell ◽  
Frank H. Arthur ◽  
James R. Nechols

Sign in / Sign up

Export Citation Format

Share Document