Membrane performance in combined processes including ozonation or advanced oxidation, powdered activated carbon and coagulation — Investigations in pilot scale

Desalination ◽  
2010 ◽  
Vol 250 (2) ◽  
pp. 819-823 ◽  
Author(s):  
Stefan Panglisch ◽  
Georges Kraus ◽  
André Tatzel ◽  
Jean-Paul Lickes
2017 ◽  
Vol 113 ◽  
pp. 160-170 ◽  
Author(s):  
Dong Li ◽  
Ben Stanford ◽  
Eric Dickenson ◽  
Wendell O. Khunjar ◽  
Carissa L. Homme ◽  
...  

2016 ◽  
Vol 2 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Senlin Shao ◽  
Fangshu Qu ◽  
Heng Liang ◽  
Haiqing Chang ◽  
Huarong Yu ◽  
...  

Ammonia removal was highly impacted by temperature and alkalinity. Fouling cake could remove a certain amount of ammonia.


2014 ◽  
Vol 9 (3) ◽  
pp. 344-352 ◽  
Author(s):  
J. Altmann ◽  
H. Bruebach ◽  
A. Sperlich ◽  
M. Jekel

Advanced treatment of wastewater is currently being discussed throughout Europe in an effort to reduce emissions to surface waters and protect drinking water resources. In this study the combination of adsorption onto powdered activated carbon (PAC) and coagulation/filtration was investigated as a single advanced treatment step for simultaneous removal of organic micropollutants (OMPs) and phosphorus from domestic secondary effluent. Two pilot-scale dual-media filters were operated in parallel for a period of 4 months to investigate the influence of PAC addition on filtration parameters and determine removal of 14 selected OMPs. OMP abatement in the PAC filter was compared to batch tests and correlated with relative removal of UV254 absorption (UVA254). Stable operation with an average PAC dose of 8 mg/L and a removal >90% of total suspended solids was possible for filtration cycles of 24 h. The results show that PAC dosing does not negatively affect either filtration resistance or removal of phosphorus by precipitation. Concentrations of benzotriazole and carbamazepine were reduced by >70%, while sulfamethoxazole and diclofenac were removed to the extent of 40–60% (median values). Relative OMP removal showed only minor fluctuations despite occasionally strong changes of influent concentrations. Moreover, the results indicate that contact times were not sufficient for complete PAC exhaustion before separation and that further adsorption onto embedded PAC in the filter significantly contributes to overall OMP removal.


2005 ◽  
Vol 51 (6-7) ◽  
pp. 231-240 ◽  
Author(s):  
P. Zhao ◽  
S. Takizawa ◽  
H. Katayama ◽  
S. Ohgaki

Two pilot-scale powdered activated carbon–microfiltration (PAC–MF) reactors were operated using river water pretreated by a biofilter. A high permeate flux (4 m/d) was maintained in two reactors with different particle sizes of PAC. High concentration (20 g/L) in the PAC adsorption zone demonstrated 60–80% of organic removal rates. Analysis on the PAC cake fouling demonstrated that attached metal ions play more important role than organic matter attached on PAC to the increase of PAC cake resistance. Effects of factors which may cause PAC cake fouling in PAC-MF process were investigated and evaluated by batch experiments, further revealing that small particulates and metal ions in raw water impose prominent influence on the PAC cake layer formation. Fe (II) precipitates after being oxidized to Fe (III) during PAC adsorption and thus Fe(III) colloids display more significant effect than other metal ions. At a high flux, PAC cake layer demonstrated a higher resistance with larger PAC due to association among colloids, metals and PAC particles, and easy migration of small particles in raw water into the void space in the PAC cake layer. Larger PAC possesses much more non-uniform particle size distribution and larger void space, making it easier for small colloids to migrate into the voids and for metal ions to associate with PAC particles by bridge effect, hence speeding up and intensifying the of PAC cake fouling on membrane surface.


2017 ◽  
Vol 77 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Lihua Sun ◽  
Ning He ◽  
Xi Duan ◽  
Bingbing Yang ◽  
Cuimin Feng ◽  
...  

Abstract The combined processes of powdered activated carbon/biological powdered activated carbon- ultrafiltration (PAC/BPAC-UF) were used to treat secondary effluent. In this study, the effect of PAC and BPAC on membrane flux, membrane resistance and the removal of different molecular weight organic compounds were investigated. In addition, the structure characteristics of the microorganisms of the BPAC were analyzed. The results showed that the optimum dosage of PAC and BPAC was 10 mg/L and 40 mg/L respectively. The reversible membrane fouling resistance of BPAC-UF was higher than that of PAC-UF, and the two processes had the least irreversible resistance at the best dosage. The biodegradation of BPAC increased the concentration of small molecular weight organic matter up to 10,000 Da in the membrane effluent. So the dissolved organic carbon (DOC) removal effect of BPAC-UF process worsened. Microorganisms such as Proteobacteria, Bacteroidetes, Planctomycetes and other microorganisms on the surface of the BPAC enhanced the removal of organic matter in water. The results of scanning electron microscopy (SEM) scans showed that there was net mucus membrane on the UF membrane surface before the backwashing of the BPAC-UF process which increased the proportion of reversible pollution resistance. The physical flushing effect of BPAC-UF was better than that of direct UF and PAC-UF processes.


Sign in / Sign up

Export Citation Format

Share Document