Formation behavior and performance studies of poly(ethylene-co-vinyl alcohol)/poly(vinyl pyrrolidone) blend membranes prepared by non-solvent induced phase inversion method

Desalination ◽  
2012 ◽  
Vol 294 ◽  
pp. 17-24 ◽  
Author(s):  
N. Riyasudheen ◽  
A. Sujith
2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Masooma Irfan ◽  
Hatijah Basri ◽  
M. Irfan

In this work, the effect of different phase inversion process on membrane morphology and performance was studied. Polyethersulfone (PES) based polymeric membranes was fabricated containing polyvinylpyrrolidone (PVP) and carboxylic functionalized multiwall carbon nanotubes (MWCNT) as additives and polyethylene glycol (PEG) having a molecular weight 1K, 10K and 35K (Dalton) were used as a model solution for observing the rejection/filteration ability of fabricated membranes. Non-solvent induce phase separation (NIP) and dry-wet phase separation (DWP) method was adopted for membrane synthesis. The FTIR spectra showed that PVP/MWCNT was effectively blended with PES polymer and different phase inversion method led to different internal morphologies of membranes as confirmed by FESEM images. The PEG rejection results suggested that membranes formed by DWP method had approximately double rejection ability than membranes formed by NIP process.


2018 ◽  
Vol 197 ◽  
pp. 09007
Author(s):  
Syawaliah Syawaliah ◽  
Nasrul Arahman ◽  
Medyan Riza ◽  
Sri Mulyati

The Polyvinylidene Fluoride (PVDF) membrane has been prepared by phase inversion method using N,N-dimethylacetamide (DMAc) as solvent and Poly Ethylene Glycol (PEG) as additive. The fabricated membrane was modified by Polydopamine (PDA) coating in concentration of 0.5 mg/ml and immersion times of 2 hours, 6 hours, and 24 hours. The characteristics and performance of the PVDF membranes before and after the modification are studied in this paper. The result of the water flux experiment showed that the PDA-coated PVDF membranes showcased a higher flux than that of pure PVDF membrane. Scanning Electron Microscopy (SEM) analysis confirmed that the membrane had an asymmetric structure consisting of two layers. There was no significant influence on the addition of PDA to the morphology of the pore matrix because the modification was done by surface coating. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that PDA was successfully introduced on the surface of PVDF membrane with the appearance of O-H from cathecol and N-H peaks at wavenumber range of 3300-3600 cm-1. Modification with PDA increased the mechanical strength of the membrane which affirmed by the results of the tensile and elongation at break evaluation.


2014 ◽  
Vol 493 ◽  
pp. 640-644 ◽  
Author(s):  
Asmadi Ali ◽  
Rosli Mohd Yunus ◽  
Mohamad Awang ◽  
Anwar Johari ◽  
Ramli Mat

Polysulfone (PSf) membrane is catogorized as hydrophobic membrane that easily fouled during membrane operation process. The presence of second hydrophilic polymer which added into membrane casting solutions plays a crucial role in adjusting the membrane properties. This hydrophilic polymer was employed in hydrophobic polymer membranes in order to improve hydrophilicity and performance as well as formed antifouling ultrafiltration (UF) membranes. In this study, a hydrophilic polymer, cellulose acetate phthalate (CAP) was added into polysulfone (PSf) membrane casting solutions by blending technique to produce PSf/CAP blend membranes. Flat sheet asymmetric PSf/CAP blend membranes were prepared by wet phase inversion method. The results revealed that an increase in CAP increased the hydrophilicity properties of PSf/CAP blend membranes compared to pure PSf membrane. The significant changes in size and numbers of microvoids and macrovoids in the morphological structures of PSf/CAP blend membranes were due to CAP promote the instantaneous liquid-liquid demixing during phase inversion process.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4436
Author(s):  
Aulia Chintia Ambarita ◽  
Sri Mulyati ◽  
Nasrul Arahman ◽  
Muhammad Roil Bilad ◽  
Norazanita Shamsuddin ◽  
...  

Polyethersulfone (PES) is the most commonly used polymer for membrane ultrafiltration because of its superior properties. However, it is hydrophobic, as such susceptible to fouling and low permeation rate. This study proposes a novel bio-based additive of dragonbloodin resin (DBR) for improving the properties and performance of PES-based membranes. Four flat sheet membranes were prepared by varying the concentration of DBR (0–3%) in the dope solutions using the phase inversion method. After fabrication, the membranes were thoroughly characterized and were tested for filtration of humic acid solution to investigate the effect of DBR loading. Results showed that the hydrophilicity, porosity, and water uptake increased along with the DBR loadings. The presence of DBR in the dope solution fastened the phase inversion, leading to a more porous microstructure, resulted in membranes with higher number and larger pore sizes. Those properties led to more superior hydraulic performances. The PES membranes loaded with DBR reached a clean water flux of 246.79 L/(m2·h), 25-folds higher than the pristine PES membrane at a loading of 3%. The flux of humic acid solution reached 154.5 ± 6.6 L/(m2·h), 30-folds higher than the pristine PES membrane with a slight decrease in rejection (71% vs. 60%). Moreover, DBR loaded membranes (2% and 3%) showed an almost complete flux recovery ratio over five cleaning cycles, demonstrating their excellent antifouling property. The hydraulic performance could possibly be enhanced by leaching the entrapped DBR to create more voids and pores for water permeation.


Author(s):  
A. M. Vijesh ◽  
J. Liya ◽  
P. C. Shyma

Severe drinking water scarcity is a major problem around the world and pressure driven membrane processes are gaining importance in the field of water purification. This work mainly focuses on improving membrane performance in terms of hydrophilicity, solute rejection, etc. It emphasizes on the preparation of polysulfone (PSf) based blend membranes via phase inversion method. PSf membrane is modified by the addition of zinc oxide (ZnO) nanoparticle at various compositions and the resultant membrane performances were studied. The PSf-ZnO membranes were characterized by ATR-IR and SEM. These membranes showed much better salt rejection performance. 


2021 ◽  
Vol 55 (5-6) ◽  
pp. 697-704
Author(s):  
HANANE ABURIDEH ◽  
ZAHIA TIGRINE ◽  
DJAMILA ZIOUI ◽  
SARAH HOUT ◽  
DJILALI TASSALIT ◽  
...  

The main objective of this work has been to study the performance of membranes developed for treating purified wastewater. Polymeric membranes have been developed from solutions containing cellulose acetate (AC) and polysulfone (PSF), using N,N-dimethylformamide (DMF) as solvent and polyethylene glycol (PEG) as additive. The phase inversion method was chosen as a technique for producing the membrane films. The incorporation of PEG allowed us to study the effect of the additive on the morphological structure, and to predict the performance of the membranes formed. Examining the flux, permeability and selectivity of the membranes allowed studying the efficiency and performance of each membrane. The application results achieved in wastewater treatment at Chenoua/TIPAZA station were very satisfactory and in accordance with the standards required by WHO. The optimal performance, in terms of permeability and selectivity, was obtained for the MC membrane with the composition: PSF/PEG/AC of 25/12/63.


Sign in / Sign up

Export Citation Format

Share Document