Electrochemical precipitation to reduce waste brine salinity

Desalination ◽  
2021 ◽  
Vol 498 ◽  
pp. 114796
Author(s):  
Boor Singh Lalia ◽  
Raed Hashaikeh
Keyword(s):  
Author(s):  
L. Vesnina ◽  
G. Lukerina ◽  
T. Ronzhina ◽  
A. Savos’kin ◽  
D. Surkov

The long-term data from morphometric studies of Artemia males from bisexual and parthenogenetic populations from hyperhaline reservoirs of the Altai region (Bolshoe Yarovoe Lake, Maloe Shklo Lake, and the Tanatar Lakes system) is analyzed in this paper. The description of signs of sexual dimorphism and sexual structure in different populations is given. The influence of brine salinity and hydrogen index on morphometric parameters of males was analyzed. There are differences in the sexual structure of the Artemia population: in the lakes Maloe Shklo and the thanatar system, the populations are bisexual (the share of males is 28.5 — 75.0 %), in the lake Bolshoe yarovoe — parthenogenetic (the share of males on average does not exceed 3 %). At the same time, sexual dimorphism is typical for both types of populations: females are larger than males, males have a larger head (the distance between the eyes is greater by 15.5 %, the diameter of the eye is 26.1 %, the length of the antenna is 22.3 %) and a larger number of bristles (36.1 %). The greatest variability is observed in the parameters of the Furka structure associated with the salinity of water by feedback and the pH — line indicator. Significant differences between the samples of males were revealed. The largest number of significant differences in morphometric indicators was found between samples of males from bisexual populations (lake thanatar and lake Maloe Shklo), the smallest — between males from the parthenogenetic population of lake Bolshoe yarovoe and males from lake Maloe Shklo.


2019 ◽  
Author(s):  
Mohammad Haftani ◽  
Chenxi Wang ◽  
Jesus David Montero Pallares ◽  
Mahdi Mahmoudi ◽  
Vahidoddin Fattahpour ◽  
...  

2017 ◽  
Vol 57 (1) ◽  
pp. 100 ◽  
Author(s):  
Emad A. Al-Khdheeawi ◽  
Stephanie Vialle ◽  
Ahmed Barifcani ◽  
Mohammad Sarmadivaleh ◽  
Stefan Iglauer

CO2 migration and storage capacity are highly affected by various parameters (e.g. reservoir temperature, vertical to horizontal permeability ratio, cap rock properties, aquifer depth and the reservoir heterogeneity). One of these parameters, which has received little attention, is brine salinity. Although brine salinity has been well demonstrated previously as a factor affecting rock wettability (i.e. higher brine salinity leads to more CO2-wet rocks), its effect on the CO2 storage process has not been addressed effectively. Thus, we developed a three-dimensional homogeneous reservoir model to simulate the behaviour of a CO2 plume in a deep saline aquifer using five different salinities (ranging from 2000 to 200 000 ppm) and have predicted associated CO2 migration patterns and trapping capacities. CO2 was injected at a depth of 1408 m for a period of 1 year at a rate of 1 Mt year–1 and then stored for the next 100 years. The results clearly indicate that 100 years after the injection of CO2 has stopped, the salinity has a significant effect on the CO2 migration distance and the amount of mobile, residual and dissolved CO2. First, the results show that higher brine salinity leads to an increase in CO2 mobility and CO2 migration distance, but reduces the amount of residually trapped CO2. Furthermore, high brine salinity leads to reduced dissolution trapping. Thus, we conclude that less-saline aquifers are preferable CO2 sinks.


SPE Journal ◽  
2017 ◽  
Vol 22 (05) ◽  
pp. 1362-1373 ◽  
Author(s):  
W.-B.. -B. Bartels ◽  
H.. Mahani ◽  
S.. Berg ◽  
R.. Menezes ◽  
J. A. van der Hoeven ◽  
...  

Summary Low-salinity waterflooding (LSF) is receiving increased interest as a promising method to improve oil-recovery efficiency. Most of the literature agrees that, on the Darcy scale, LSF can be regarded as a wettability-modification process, leading to a more-water-wet state, although no consensus on the microscopic mechanisms has been reached. To establish a link between the pore-scale and the Darcy-scale description, the flow dynamic at an intermediate scale—i.e., networks of multiple pores—should be investigated. One of the main challenges in addressing phenomena on this scale is to design a model system representative of natural rock. The model system should allow for a systematic investigation of influencing parameters with pore-scale resolution while simultaneously being large enough to capture larger-length-scale effects such as saturation changes and the mobilization and connection of oil ganglia. In this paper, we use micromodels functionalized with active clay minerals as a model system to study the low-salinity effect (LSE) on the pore scale. A new method was devised to deposit clays in the micromodel. Clay suspensions were made by mixing natural clays (montmorillonite) with isopropyl alcohol (IPA) and were injected into optically transparent 2D glass micromodels. After drying the models, the clay particles were deposited and stick naturally to the glass surfaces. The micromodel was then used to investigate the dependence of the LSE on the type of oil (crude oil vs. n-decane), the presence of clay particles, and aging. Our results show that the system is responsive to low-salinity brine as the effective contact angle of crude oil shifts toward a more-water-wetting state when brine salinity is reduced. When using n-decane as a reference case of inert oil, no change in contact angle occurred after a reduction in brine salinity. This responsiveness in terms of contact angle does not necessarily mean that more oil is recovered. Only in the cases where the contact-angle change (because of low-salinity exposure) led to release of oil and reconnection with oil of adjacent pore bodies did the oil become mobile and the oil saturation effectively reduce. This makes contact-angle changes a necessary but not sufficient requirement for incremental recovery by LSF. Interestingly, the wettability modification was observed in the absence of clay. Osmosis and interfacial tension (IFT) change were found not to be the primary driving mechanisms of the low-salinity response.


SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 53-68 ◽  
Author(s):  
Hassan Mahani ◽  
Arsene Levy Keya ◽  
Steffen Berg ◽  
Ramez Nasralla

Summary Laboratory studies have shown that wettability of carbonate rock can be altered to a less-oil-wetting state by manipulation of brine composition and reduction of salinity. Our recent study (Mahani et al. 2015b) suggests that surface-charge alteration is likely to be the driving mechanism of the low-salinity effect in carbonates. Various studies have already established the sensitivity of carbonate-surface charge to brine salinity, pH value, and potential-determining ions in brines. However, in the majority of the studies, single-salt brines or model-carbonate rocks have been used and it is fairly unclear how natural rock reacts to reservoir-relevant brine as well as successive brine dilution; whether different types of carbonate-reservoir rocks exhibit different electrokinetic properties; and how the surface-charge behavior obtained at different brine salinities and pH values can be explained. This paper presents a comparative study aimed at gaining more insight into the electrokinetics of different types of carbonate rock. This is achieved by ζ-potential measurements on Iceland spar calcite and three reservoir-related rocks—Middle Eastern limestone, Stevns Klint chalk, and Silurian dolomite outcrop—over a wide range of salinity, brine composition, and pH values. With a view to arriving at a more-tractable approach, a surface-complexation model (SCM) implemented in PHREEQC software (Parkhurst and Appelo 2013) is developed to relate our understanding of the surface reactions to measured ζ-potentials. It was found that regardless of the rock type, the trends of ζ-potentials with salinity and pH are quite similar. For all cases, the surface charge was found to be positive in high-salinity formation water (FW), which should favor oil-wetting. The ζ-potential successively decreased toward negative values when the brine salinity was lowered to seawater (SW) level and diluted SW. At all salinities, the ζ-potential showed a strong dependence on pH, with positive slope that remained so even with excessive dilution. The sensitivity of the ζ-potential to pH change was often higher at lower salinities. The existing SCMs cannot predict the observed increase of ζ-potential with pH; therefore, a new model is proposed to capture this feature. According to modeling results, formation of surface species, particularly >CaSO4− and to a lower extent >CO3Ca+ and >CO3Mg+, strongly influence the total surface charge. Increasing the pH turns the negatively charged moiety >CaSO4− into both negatively charged >CaCO3− and neutral > CaOH entities. (Note that throughout this paper, the symbol > indicates surface complexes.) This substitution reduces the negative charge of the surface. The surface concentration of >CO3Ca+ and >CO3Mg+ moieties changes little with change of pH. Nevertheless, besides similarities in ζ-potential trends, there exist notable differences in terms of magnitude and the isoelectric point (IEP), even between carbonates that are mainly composed of calcite. Among all the samples, chalk particles exhibited the most negative surface charges, followed by limestone. In contrast to this, dolomite particles showed the most positive ζ-potential, followed by calcite crystal. Overall, chalk particles exhibited the highest surface reactivity to pH and salinity change, whereas dolomite particles showed the lowest.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Bumjoo Kim ◽  
Rhokyun Kwak ◽  
Hyukjin J. Kwon ◽  
Van Sang Pham ◽  
Minseok Kim ◽  
...  

Abstract There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.


Researchers have proved the significance of water injection by tuning its composition and salinity into the reservoir during smart water flooding. Once the smart water invades through the pore spaces, it destabilises crude oil-brine-rock (COBR) that leads to change in wettability of the reservoir rocks. During hydrocarbon accumulation and migration, polar organic compounds were being adsorbed on the rock surface making the reservoir oil/mixed wet in nature. Upon invasion of smart water, due to detachment of polar compounds from the rock surfaces, the wettability changes from oil/mixed wet to water wet thus enhances the oil recovery efficiency. The objective of this paper is to find optimum salinity and ionic composition of the synthetic brines at which maximum oil recovery would be observed. Three core flood studies have been conducted in the laboratory to investigate the effect of pH, composition and salinity of the injected brine over oil recovery. Every time, flooding has been conducted at reservoir formation brine salinity i.e at 1400 ppm followed by different salinities. Here, tertiary mode of flooding has been carried out for two core samples while secondary flooding for one. Results showed maximum oil recovery by 40.12% of original oil in place (OOIP) at 1050ppm brine salinity at secondary mode of flooding. So, optimized smart water has been proposed with 03 major salts, KCl, MgCl2 and CaCl2 in secondary mode of flooding that showed maximum oil recovery in terms of original oil in place.


Elem Sci Anth ◽  
2016 ◽  
Vol 4 ◽  
Author(s):  
Gauthier Carnat ◽  
Frédéric Brabant ◽  
Isabelle Dumont ◽  
Martin Vancoppenolle ◽  
Stephen F. Ackley ◽  
...  

Abstract Temporal changes in the concentration profiles of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP), and dimethylsulfoxide (DMSO) were measured in pack ice from the Bellingshausen Sea (Antarctica) during the winter-spring transition of 2007. Two sites with contrasting snow and ice thicknesses were sampled, with high concentrations of DMS, DMSP, and DMSO observed at both sites, especially in surface ice. These high concentrations were shown to correspond to the development of a surface ice microalgal community dominated by strong DMSP producers (flagellates and dinoflagellates) following flooding of the ice cover. Several short-term synoptic events were observed and shown to influence strongly the dynamics of sea ice DMS, DMSP, and DMSO. In particular, a cold spell event was associated with drastic changes in the environmental conditions for the sea ice microbial communities and to a remarkable increase in the production of dimethylated sulfur compounds at both sites. A good correlation between all dimethylated sulfur compounds, sea ice temperature, and brine salinity suggested that the observed increase was triggered mainly by increased thermal and osmotic stresses on microalgal cells. Atmospheric forcing, by controlling sea ice temperature and hence the connectivity and instability of the brine network, was also shown to constrain the transfer of dimethylated sulfur compounds in the ice towards the ocean via brine drainage. Analysis of the two contrasting sampling sites shed light on the key role played by the snow cover in the sea ice DMS cycle. Thicker snow cover, by insulating the underlying sea ice, reduced the amplitude of environmental changes associated with the cold spell, leading to a weaker physiological response and DMS, DMSP, and DMSO production. Thicker snow also hampered the development of steep gradients in sea ice temperature and brine salinity, thereby decreasing the potential for the release of dimethylated sulfur compounds to the ocean via brine drainage.


Sign in / Sign up

Export Citation Format

Share Document