Fabrication of S-scheme TiO2/g-C3N4 nanocomposites for generation of hydrogen gas and removal of fluorescein dye

2022 ◽  
pp. 108819
Author(s):  
Ali Alsalme ◽  
A.H. Galal ◽  
M. Gad Al-Metwaly ◽  
Rafei Abdel Aziz ◽  
M.F. Abdel-Messih ◽  
...  
Keyword(s):  
1967 ◽  
Vol 31 ◽  
pp. 265-278 ◽  
Author(s):  
A. Blaauw ◽  
I. Fejes ◽  
C. R. Tolbert ◽  
A. N. M. Hulsbosch ◽  
E. Raimond

Earlier investigations have shown that there is a preponderance of negative velocities in the hydrogen gas at high latitudes, and that in certain areas very little low-velocity gas occurs. In the region 100° <l< 250°, + 40° <b< + 85°, there appears to be a disturbance, with velocities between - 30 and - 80 km/sec. This ‘streaming’ involves about 3000 (r/100)2solar masses (rin pc). In the same region there is a low surface density at low velocities (|V| < 30 km/sec). About 40% of the gas in the disturbance is in the form of separate concentrations superimposed on a relatively smooth background. The number of these concentrations as a function of velocity remains constant from - 30 to - 60 km/sec but drops rapidly at higher negative velocities. The velocity dispersion in the concentrations varies little about 6·2 km/sec. Concentrations at positive velocities are much less abundant.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Mahyudin Abdul Rachman

Enterobacter aerogenes AY-2 mutant is known for hydrogen gas producer which ws obtained from the sludge of methane fermentation and the yield is 1.5 fold higher than wildtype. Hydrogen gas production can be gain via NADH oxidation in anaerobic metabolic pathway by blocking organic acid production. Metabolic pathway can be changed by mutagenesis. Enterobacter aerogenes AY-2 mutated with ethyl methane sulfonate in logarithmic phase with consentration 10, 11, 12, 13, 14 and 15 μl/ml cell suspention during 120 minute. Mutation that result lowest survival ratio (0,01%) was 14 μl EMS/ml cell suspention is repeated with variation incubation time, 30, 60, 90 and 120 minute. 166 double mutant colony has been collected and choosen randomly. The choosen 43 colony was fermented in glycerol complex medium for determining ten double mutant with the highest H2 production. Double mutant AD-H43 is a highest H2 producer that increase 20% H2 production from AY-2 and has a decrease lactid acid production, 31% less from AY-2. Increasing H2 production in double mutant AD-H43 is caused by lactate dehydrogenase deffi cient.Keywords: Enterobacter aerogenes AY-2, ethyl methane sulfonate (EMS), H2 and methane sludge


2019 ◽  
Author(s):  
Shin-ichi Hirano ◽  
Yukimasa Aoki ◽  
Ryosuke Kurokawa ◽  
Xiao-Kang Li ◽  
Naotsugu Ichimaru ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Longna Li ◽  
Wang Lou ◽  
Lingshuai Kong ◽  
Wenbiao Shen

Abstract:: The emerging field of hydrogen biology has to date mainly been applied in medicine. However, hydrogen biology can also enable positive outcomes in agriculture. Agriculture faces significant challenges resulting from a growing population, climate change, natural disasters, environment pollution, and food safety issues. In fact, hydrogen agriculture is a practical application of hydrogen biology, which may assist in addressing many of these challenges. It has been demonstrated that hydrogen gas (H2) may enhance plant tolerance towards abiotic and biotic stresses, regulate plant growth and development, increase nutritional values, prolong the shelf life, and decrease the nitrite accumulation during the storage of vegetables, as well as increase the resilience of livestock to pathogens. Our field trials show that H2 may have a promising potential to increase yield and improve the quality of agricultural products. This review aims to elucidate mechanisms for a novel agricultural application of H2 in China. Future development of hydrogen agriculture is proposed as well. Obviously, hydrogen agriculture belongs to low carbon economy, and has great potential to provide “safe, tasty, healthy, and highyield” agricultural products so that it may improve the sustainability of agriculture.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 666 ◽  
Author(s):  
Nikolay Ivanovich Polushin ◽  
Alexander Ivanovich Laptev ◽  
Boris Vladimirovich Spitsyn ◽  
Alexander Evgenievich Alexenko ◽  
Alexander Mihailovich Polyansky ◽  
...  

Boron-doped diamond is a promising semiconductor material that can be used as a sensor and in power electronics. Currently, researchers have obtained thin boron-doped diamond layers due to low film growth rates (2–10 μm/h), with polycrystalline diamond growth on the front and edge planes of thicker crystals, inhomogeneous properties in the growing crystal’s volume, and the presence of different structural defects. One way to reduce structural imperfection is the specification of optimal synthesis conditions, as well as surface etching, to remove diamond polycrystals. Etching can be carried out using various gas compositions, but this operation is conducted with the interruption of the diamond deposition process; therefore, inhomogeneity in the diamond structure appears. The solution to this problem is etching in the process of diamond deposition. To realize this in the present work, we used triethyl borate as a boron-containing substance in the process of boron-doped diamond chemical vapor deposition. Due to the oxygen atoms in the triethyl borate molecule, it became possible to carry out an experiment on simultaneous boron-doped diamond deposition and growing surface etching without the requirement of process interruption for other operations. As a result of the experiments, we obtain highly boron-doped monocrystalline diamond layers with a thickness of about 8 μm and a boron content of 2.9%. Defects in the form of diamond polycrystals were not detected on the surface and around the periphery of the plate.


2020 ◽  
Vol 5 (1) ◽  
pp. e000542
Author(s):  
Nabil Issa ◽  
Whitney E Liddy ◽  
Sandeep Samant ◽  
David B Conley ◽  
Robert C Kern ◽  
...  

BackgroundCricothyrotomy is associated with significant aerosolization that increases the potential risk of infection among healthcare providers. It is important to identify simple yet effective methods to suppress aerosolization and improve the safety of healthcare providers.Methods5 ear, nose and throat and general surgeons used a locally developed hybrid cricothyrotomy simulator with a porcine trachea to test three draping methods to suppress aerosolization during the procedure: an X-ray cassette drape, dry operating room (OR) towels and wet OR towels. The three methods were judged based on three categories: effectiveness of suppression, availability in all healthcare systems and ease of handling.ResultsAll five surgeons performed the procedure independently using each of the three suppression methods. The wet OR towel drape was found to be an effective method to suppress aerosolization, and it did not hinder the surgeons from performing the procedure accurately. This finding was confirmed by using an atomized fluorescein dye injection into the porcine trachea, representing aerosolized material while performing the procedure.ConclusionsWe present a novel intervention using wet towels to suppress aerosolization during cricothyrotomy. Wet towels are cheap and readily available within any healthcare setting regardless of the financial resources available.


Sign in / Sign up

Export Citation Format

Share Document