scholarly journals Nano-engineered delivery systems for cancer imaging and therapy: Recent advances, future direction and patent evaluation

2019 ◽  
Vol 24 (2) ◽  
pp. 462-491 ◽  
Author(s):  
Ghazal Nabil ◽  
Ketki Bhise ◽  
Samaresh Sau ◽  
Mohamed Atef ◽  
Hossny A. El-Banna ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1902
Author(s):  
Wen Zhou ◽  
Guangzhao Yang ◽  
Xiaoyue Ni ◽  
Shanchao Diao ◽  
Chen Xie ◽  
...  

Nanomaterials have been widely applied in the field of cancer imaging and therapy. However, conventional nanoparticles including micelles and liposomes may suffer the issue of dissociation in the circulation. In contrast, crosslinked nanogels the structures of which are covalently crosslinked have better physiological stability than micelles and liposomes, making them more suitable for cancer theranostics. In this review, we summarize recent advances in crosslinked nanogels for cancer imaging and therapy. The applications of nanogels in drug and gene delivery as well as development of novel cancer therapeutic methods are first introduced, followed by the introduction of applications in optical and multimodal imaging, and imaging-guided cancer therapy. The conclusion and future direction in this field are discussed at the end of this review.


2013 ◽  
Vol 40 (10) ◽  
pp. 1014
Author(s):  
Xiao-Hong HAO ◽  
Cui-Miao ZHANG ◽  
Xiao-Long LIU ◽  
Xing-Jie LIANG ◽  
Guang JIA ◽  
...  

2020 ◽  
Vol 20 (11) ◽  
pp. 1001-1016
Author(s):  
Sandra Ramírez-Rave ◽  
María Josefa Bernad-Bernad ◽  
Jesús Gracia-Mora ◽  
Anatoly K. Yatsimirsky

Hybrid materials based on Mesoporous Silica Nanoparticles (MSN) have attracted plentiful attention due to the versatility of their chemistry, and the field of Drug Delivery Systems (DDS) is not an exception. MSN present desirable biocompatibility, high surface area values, and a well-studied surface reactivity for tailoring a vast diversity of chemical moieties. Particularly important for DDS applications is the use of external stimuli for drug release. In this context, light is an exceptional alternative due to its high degree of spatiotemporal precision and non-invasive character, and a large number of promising DDS based on photoswitchable properties of azobenzenes have been recently reported. This review covers the recent advances in design of DDS using light as an external stimulus mostly based on literature published within last years with an emphasis on usually overlooked underlying chemistry, photophysical properties, and supramolecular complexation of azobenzenes.


2011 ◽  
Vol 1 (2) ◽  
pp. 135-149
Author(s):  
Jose Maria Bermudez ◽  
Daniela Quinteros ◽  
Ricardo Grau ◽  
Daniel Allemandi ◽  
Santiago Palma

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 940
Author(s):  
Chaojie Zhu ◽  
Zhiheng Ji ◽  
Junkai Ma ◽  
Zhijie Ding ◽  
Jie Shen ◽  
...  

Cancer is one of the most devastating and ubiquitous human diseases. Conventional therapies like chemotherapy and radiotherapy are the most widely used cancer treatments. Despite the notable therapeutic improvements that these measures achieve, disappointing therapeutic outcome and cancer reoccurrence commonly following these therapies demonstrate the need for better alternatives. Among them, bacterial therapy has proven to be effective in its intrinsic cancer targeting ability and various therapeutic mechanisms that can be further bolstered by nanotechnology. In this review, we will discuss recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems in cancer treatment. Therapeutic mechanisms of these hybrid nanoformulations are highlighted to provide an up-to-date understanding of this emerging field.


Sign in / Sign up

Export Citation Format

Share Document