East–west asymmetry in surface mixed layer and ocean heat content in the Pacific sector of the Arctic Ocean derived from AMSR-E sea surface temperature

2012 ◽  
Vol 77-80 ◽  
pp. 62-69 ◽  
Author(s):  
Kohei Mizobata ◽  
Koji Shimada
2010 ◽  
Vol 40 (10) ◽  
pp. 2282-2297 ◽  
Author(s):  
Tangdong Qu ◽  
Shan Gao ◽  
Ichiro Fukumori ◽  
Rana A. Fine ◽  
Eric J. Lindstrom

Abstract The obduction of equatorial 13°C Water in the Pacific is investigated using a simulated passive tracer of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO). The result shows that the 13°C Water initialized in the region 8°N–8°S, 130°–90°W enters the surface mixed layer in the eastern tropical Pacific, mainly through upwelling near the equator, in the Costa Rica Dome, and along the coast of Peru. Approximately two-thirds of this obduction occurs within 10 years after the 13°C Water being initialized, with the upper portion of the water mass reaching the surface mixed layer in only about a month. The obduction of the 13°C Water helps to maintain a cool sea surface temperature year-round, equivalent to a surface heat flux of about −6.0 W m−2 averaged over the eastern tropical Pacific (15°S–15°N, 130°W–eastern boundary) for the period of integration (1993–2006). During El Niño years, when the thermocline deepens as a consequence of the easterly wind weakening, the obduction of the 13°C Water is suppressed, and the reduced vertical entrainment generates a warming anomaly of up to 10 W m−2 in the eastern tropical Pacific and in particular along the coast of Peru, providing explanations for the warming of sea surface temperature that cannot be accounted for by local winds alone. The situation is reversed during La Niña years.


2011 ◽  
Vol 15 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Z. Zeng ◽  
W. W. Hsieh ◽  
A. Shabbar ◽  
W. R. Burrows

Abstract. For forecasting the maximum 5-day accumulated precipitation over the winter season at lead times of 3, 6, 9 and 12 months over Canada from 1950 to 2007, two nonlinear and two linear regression models were used, where the models were support vector regression (SVR) (nonlinear and linear versions), nonlinear Bayesian neural network (BNN) and multiple linear regression (MLR). The 118 stations were grouped into six geographic regions by K-means clustering. For each region, the leading principal components of the winter maximum 5-d accumulated precipitation anomalies were the predictands. Potential predictors included quasi-global sea surface temperature anomalies and 500 hPa geopotential height anomalies over the Northern Hemisphere, as well as six climate indices (the Niño-3.4 region sea surface temperature, the North Atlantic Oscillation, the Pacific-North American teleconnection, the Pacific Decadal Oscillation, the Scandinavia pattern, and the East Atlantic pattern). The results showed that in general the two robust SVR models tended to have better forecast skills than the two non-robust models (MLR and BNN), and the nonlinear SVR model tended to forecast slightly better than the linear SVR model. Among the six regions, the Prairies region displayed the highest forecast skills, and the Arctic region the second highest. The strongest nonlinearity was manifested over the Prairies and the weakest nonlinearity over the Arctic.


2010 ◽  
Vol 7 (3) ◽  
pp. 3521-3550 ◽  
Author(s):  
Z. Zeng ◽  
W. W. Hsieh ◽  
A. Shabbar ◽  
W. R. Burrows

Abstract. For forecasting the maximum 5-d accumulated precipitation over the winter season at lead times of 3, 6, 9 and 12 months over Canada from 1950 to 2007, two nonlinear and two linear regression models were used, where the models were support vector regression (SVR) (nonlinear and linear versions), nonlinear Bayesian neural network (BNN) and multiple linear regression (MLR). The 118 stations were grouped into six geographic regions by K-means clustering. For each region, the leading principal components of the winter extreme precipitation were the predictands. Potential predictors included quasi-global sea surface temperature anomalies and 500 hPa geopotential height anomalies over the Northern Hemisphere, as well as six climate indices (the Niño-3.4 region sea surface temperature, the North Atlantic Oscillation, the Pacific-North American teleconnection, the Pacific Decadal Oscillation, the Scandinavia pattern, and the East Atlantic pattern). The results showed that in general the two robust SVR models tended to have better forecast skills than the two non-robust models (MLR and BNN), and the nonlinear SVR model tended to forecast slightly better than the linear SVR model. Among the six regions, the Eastern Prairies region displayed the highest forecast skills, and the Arctic region the second highest. The strongest nonlinearity was manifested over the Eastern Prairies and the weakest nonlinearity over the Arctic.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


2021 ◽  
Vol 13 (5) ◽  
pp. 831
Author(s):  
Jorge Vazquez-Cuervo ◽  
Chelle Gentemann ◽  
Wenqing Tang ◽  
Dustin Carroll ◽  
Hong Zhang ◽  
...  

The Arctic Ocean is one of the most important and challenging regions to observe—it experiences the largest changes from climate warming, and at the same time is one of the most difficult to sample because of sea ice and extreme cold temperatures. Two NASA-sponsored deployments of the Saildrone vehicle provided a unique opportunity for validating sea-surface salinity (SSS) derived from three separate products that use data from the Soil Moisture Active Passive (SMAP) satellite. To examine possible issues in resolving mesoscale-to-submesoscale variability, comparisons were also made with two versions of the Estimating the Circulation and Climate of the Ocean (ECCO) model (Carroll, D; Menmenlis, D; Zhang, H.). The results indicate that the three SMAP products resolve the runoff signal associated with the Yukon River, with high correlation between SMAP products and Saildrone SSS. Spectral slopes, overall, replicate the −2.0 slopes associated with mesoscale-submesoscale variability. Statistically significant spatial coherences exist for all products, with peaks close to 100 km. Based on these encouraging results, future research should focus on improving derivations of satellite-derived SSS in the Arctic Ocean and integrating model results to complement remote sensing observations.


Sign in / Sign up

Export Citation Format

Share Document