scholarly journals Southern Ocean forcing of the North Atlantic at multi-centennial time scales in the Kiel Climate Model

Author(s):  
Torge Martin ◽  
Wonsun Park ◽  
Mojib Latif
2006 ◽  
Vol 36 (8) ◽  
pp. 1523-1552 ◽  
Author(s):  
Agus Santoso ◽  
Matthew H. England ◽  
Anthony C. Hirst

Abstract The natural variability of Circumpolar Deep Water (CDW) is analyzed using a long-term integration of a coupled climate model. The variability is decomposed using a standard EOF analysis into three separate modes accounting for 68% and 82% of the total variance in the upper and lower CDW layers, respectively. The first mode exhibits an interbasin-scale variability on multicentennial time scales, originating in the North Atlantic and flowing southward into the Southern Ocean via North Atlantic Deep Water (NADW). Salinity dipole anomalies appear to propagate around the Atlantic meridional overturning circulation on these time scales with the strengthening and weakening of NADW formation. The anomaly propagates northward from the midlatitude subsurface of the South Atlantic and sinks in the North Atlantic before flowing southward along the CDW isopycnal layers. This suggests an interhemispheric connection in the generation of the first CDW variability mode. The second mode shows a localized θ−S variability in the Brazil–Malvinas confluence zone on multidecadal to centennial time scales. Heat and salt budget analyses reveal that this variability is controlled by meridional advection driven by fluctuations in the strength of the Deep Western Boundary and the Malvinas Currents. The third mode suggests an Antarctic Intermediate Water source in the South Pacific contributing to variability in upper CDW. It is further found that NADW formation is mainly buoyancy driven on the time scales resolved, with only a weak connection with Southern Hemisphere winds. On the other hand, Southern Hemisphere winds have a more direct influence on the rate of NADW outflow into the Southern Ocean. The model’s spatial pattern of θ−S variability is consistent with the limited observational record in the Southern Hemisphere. However, some observations of decadal CDW θ−S changes are beyond that seen in the model in its unperturbed state.


2018 ◽  
Vol 10 (1) ◽  
pp. 609-626 ◽  
Author(s):  
Rebecca Latto ◽  
Anastasia Romanou

Abstract. In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the “ocean carbon states”, as obtained using a data mining/pattern recognition technique in observation-based as well as model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in providing more insights into the regional and temporal variability of the marine carbon cycle. This is important as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS) climate model. Our analysis shows that ocean carbon states are associated with the subtropical–subpolar gyre during the colder months of the year and the tropics during the warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model error attribution. Model air–sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are shown to be most important in the Southern Ocean flux bias. All data and analysis scripts are available at https://data.giss.nasa.gov/oceans/carbonstates/ (DOI: https://doi.org/10.5281/zenodo.996891).


2010 ◽  
Vol 23 (13) ◽  
pp. 3626-3638 ◽  
Author(s):  
Leela M. Frankcombe ◽  
Anna von der Heydt ◽  
Henk A. Dijkstra

Abstract The issue of multidecadal variability in the North Atlantic has been an important topic of late. It is clear that there are multidecadal variations in several climate variables in the North Atlantic, such as sea surface temperature and sea level height. The details of this variability, in particular the dominant patterns and time scales, are confusing from both an observational as well as a theoretical point of view. After analyzing results from observational datasets and a 500-yr simulation of an Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) climate model, two dominant time scales (20–30 and 50–70 yr) of multidecadal variability in the North Atlantic are proposed. The 20–30-yr variability is characterized by the westward propagation of subsurface temperature anomalies. The hypothesis is that the 20–30-yr variability is caused by internal variability of the Atlantic Meridional Overturning Circulation (MOC) while the 50–70-yr variability is related to atmospheric forcing over the Atlantic Ocean and exchange processes between the Atlantic and Arctic Oceans.


2016 ◽  
Vol 12 (9) ◽  
pp. 1919-1932 ◽  
Author(s):  
Emma J. Stone ◽  
Emilie Capron ◽  
Daniel J. Lunt ◽  
Antony J. Payne ◽  
Joy S. Singarayer ◽  
...  

Abstract. Recent data compilations of the early Last Interglacial period have indicated a bipolar temperature response at 130 ka, with colder-than-present temperatures in the North Atlantic and warmer-than-present temperatures in the Southern Ocean and over Antarctica. However, climate model simulations of this period have been unable to reproduce this response, when only orbital and greenhouse gas forcings are considered in a climate model framework. Using a full-complexity general circulation model we perform climate model simulations representative of 130 ka conditions which include a magnitude of freshwater forcing derived from data at this time. We show that this meltwater from the remnant Northern Hemisphere ice sheets during the glacial–interglacial transition produces a modelled climate response similar to the observed colder-than-present temperatures in the North Atlantic at 130 ka and also results in warmer-than-present temperatures in the Southern Ocean via the bipolar seesaw mechanism. Further simulations in which the West Antarctic Ice Sheet is also removed lead to warming in East Antarctica and the Southern Ocean but do not appreciably improve the model–data comparison. This integrated model–data approach provides evidence that Northern Hemisphere freshwater forcing is an important player in the evolution of early Last Interglacial climate.


2016 ◽  
Author(s):  
Emma J. Stone ◽  
Emilie Capron ◽  
Daniel J. Lunt ◽  
Antony J. Payne ◽  
Joy S. Singarayer ◽  
...  

Abstract. Recent data compilations of the early Last Interglacial period have indicated a bipolar temperature response at 130 ka, with colder-than-present temperatures in the North Atlantic and warmer-than-present temperatures in the Southern Ocean and over Antarctica. However, climate model simulations of this period have been unable to reproduce this response, when only orbital and greenhouse gas forcings are considered in a climate model framework. Here we show using full complexity General Circulation Model simulations at 130 ka with the magnitude of freshwater forcing derived from data, that meltwater from the remnant Northern Hemisphere ice-sheets during the glacial-interglacial transition accounts for the observed colder than present temperatures in the North Atlantic at 130 ka and also results in warmer than present temperatures in the Southern Ocean via the bipolar seesaw mechanism. This integrated model-data approach, for the first time, provides evidence that Northern Hemisphere freshwater forcing is an important player in the evolution of early Last Interglacial climate.


2018 ◽  
Vol 601 ◽  
pp. 109-126 ◽  
Author(s):  
N McGinty ◽  
AD Barton ◽  
NR Record ◽  
ZV Finkel ◽  
AJ Irwin

2015 ◽  
Vol 65 (8) ◽  
pp. 1079-1093 ◽  
Author(s):  
Annika Drews ◽  
Richard J. Greatbatch ◽  
Hui Ding ◽  
Mojib Latif ◽  
Wonsun Park

2021 ◽  
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

<p>There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic streamfuntions, meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic variability. This mode accounting for about 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre circulation leads to lower surface salinity and density in the sinking region, which eventually reduces deep convection and AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.</p>


2021 ◽  
Author(s):  
Paridhi Rustogi ◽  
Peter Landschuetzer ◽  
Sebastian Brune ◽  
Johanna Baehr

<p>Understanding the variability and drivers of air-sea CO<span><sub>2</sub></span> fluxes on seasonal timescales is critical for resolving the ocean carbon sink's evolution and variability. Here, we investigate whether discrepancies in the representation of air-sea CO<span><sub>2</sub></span> fluxes on a seasonal timescale accumulate to influence the representation of CO<span><sub>2</sub></span> fluxes on an interannual timescale in two important ocean CO<span><sub>2 </sub></span>sink regions – the North Atlantic basin and the Southern Ocean. Using an observation-based product (SOM-FFN) as a reference, we investigate the representation of air-sea CO<span><sub>2</sub></span> fluxes in the Max Planck Institute's Earth System Model Grand Ensemble (MPI-ESM GE). Additionally, we include a simulation based on the same model configuration, where observational data from the atmosphere and ocean components is assimilated (EnKF assimilation) to verify if the inclusion of observational data alters the model state significantly and if the updated modelled CO<span><sub>2 </sub></span>flux values better represent observations.</p><p>We find agreement between all three observation-based and model products on an interannual timescale for the North Atlantic basin. However, the agreement on a seasonal timescale is inconsistent with discrepancies as large as 0.26 PgC/yr in boreal autumn in the North Atlantic. In the Southern Ocean, we find little agreement between the three products on an interannual basis with significant seasonal discrepancies as large as 1.71 PgC/yr in austral winter. However, while we identify regional patterns of dominating seasonal variability in MPI-GE and EnKF, we find that the SOM-FFN cannot demonstrate robust conclusions on the relevance of seasonal variability in the Southern Ocean. In turn, we cannot pin down the problems for this region.</p>


2012 ◽  
Vol 8 (3) ◽  
pp. 1885-1914
Author(s):  
D. Xiao ◽  
P. Zhao ◽  
Y. Wang ◽  
X. Zhou

Abstract. Using an intermediate-complexity UVic Earth System Climate Model (UVic Model), the geographical and seasonal implications and an indicative sense of the historical climate found in the δ18O record of the Guliya ice core (hereinafter, the Guliya δ18O) are investigated under time-dependent orbital forcing with an acceleration factor of 100 over the past 130 ka. The results reveal that the simulated late-summer (August–September) Guliya surface air temperature (SAT) reproduces the 23-ka precession and 43-ka obliquity cycles in the Guliya δ18O. Furthermore, the Guliya δ18O is significantly correlated with the SAT over the Northern Hemisphere (NH), which suggests the Guliya δ18O is an indicator of the late-summer SAT in the NH. Corresponding to the warm and cold phases of the precession cycle in the Guliya temperature, there are two anomalous patterns in the SAT and sea surface temperature (SST) fields. The first anomalous pattern shows an increase in the SAT (SST) toward the Arctic, possibly associated with the joint effect of the precession and obliquity cycles, and the second anomalous pattern shows an increase in the SAT (SST) toward the equator, possibly due to the influence of the precession cycle. Additionally, the summer (winter) Guliya and NH temperatures are higher (lower) in the warm phases of Guliya late-summer SAT than in the cold phases. Furthermore, the Guliya SAT is closely related to the North Atlantic SST, in which the Guliya precipitation may act as a "bridge" linking the Guliya SAT and the North Atlantic SST.


Sign in / Sign up

Export Citation Format

Share Document