Corrigendum to [Dyes Pigments] (2018) 451–462

2021 ◽  
Vol 190 ◽  
pp. 109295
Author(s):  
A.A. Ali ◽  
Ezzat A. El Fadaly ◽  
I.S. Ahmed
2021 ◽  
pp. 160745
Author(s):  
Zhanglin Chen ◽  
Wei Cui ◽  
Kaiming Zhu ◽  
Chunguang Zhang ◽  
Chuandong Zuo ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Atanu Naskar ◽  
Sohee Lee ◽  
Kwang-sun Kim

Antibiotic therapy is the gold standard for bacterial infections treatment. However, the rapid increase in multidrug-resistant (MDR) bacterial infections and its recent use for secondary bacterial infections in many COVID-19 patients has considerably weakened its treatment efficacy. These shortcomings motivated researchers to develop new antibacterial materials, such as nanoparticle-based antibacterial platform with the ability to increase the chances of killing MDR strains and prevent their drug resistance. Herein, we report a new black phosphorus (BP)-based non-damaging near-infrared light-responsive platform conjugated with ZnO and Au nanoparticles as a synergistic antibacterial agent against Staphylococcus aureus species. First, BP nanosheets containing Au nanoparticles were assembled in situ with the ZnO nanoparticles prepared by a low-temperature solution synthesis method. Subsequently, the antibacterial activities of the resulting Au–ZnO–BP nanocomposite against the non-resistant, methicillin-resistant, and erythromycin-resistant S. aureus species were determined, after its photothermal efficacy was assessed. The synthesized nanocomposite exhibited excellent anti-S. aureus activity and good photothermal characteristics. The non-resistant S. aureus species did not produce drug-resistant bacteria after the treatment of multiple consecutive passages under the pressure of the proposed nanoantibiotic, but rapidly developed resistance to erythromycin. This work clearly demonstrates the excellent photothermal antibacterial properties of Au–ZnO–BP nanocomposite against the MDR S. aureus species.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmad Abulfathi Umar ◽  
Muhamad Fazly Abdul Patah ◽  
Faisal Abnisa ◽  
Wan Mohd Ashri Wan Daud

AbstractMagnetic hyperthermia therapy (MHT) is a highly promising therapeutic modality for the treatment of different kinds of cancers and malignant tumors. The therapy is based on the concept that; iron oxide nanoparticles deposited at cancer sites can generate heat when exposed to an alternating current magnetic field or near infrared radiation and consequently destroying only the cancer cells by exploiting their vulnerability to heat. The fact that the treatment is at molecular level and that iron oxide nanoparticles provide more guided focus heating justifies its efficacy over treatment such as surgery, radiation therapy and chemotherapy. Nevertheless, the spread of MHT as the next-generation therapeutics has been shadowed by insufficient heating especially at the in vivo stage. This can be averted by modifying the iron oxide nanoparticle structure. To this end, various attempts have been made by developing a magnetic hybrid nanostructure capable of generating efficient heat. However, the synthesis method for each component (of the magnetic hybrid nanostructure) and the grafting process is now an issue. This has a direct effect on the performance of the magnetic hybrid nanostructure in MHT and other applications. The main objective of this review is to detail out the different materials, methods and characterization techniques that have been used so far in developing magnetic hybrid nanostructure. In view of this, we conducted a comprehensive review and present a road map for developing a magnetic hybrid nanostructure that is capable of generating optimum heat during MHT. We further summarize the various characterization techniques and necessary parameters to study in validating the efficiency of the magnetic hybrid nanostructure. Hopefully, this contribution will serve as a guide to researchers that are willing to evaluate the properties of their magnetic hybrid nanostructure.


2014 ◽  
Vol 40 (8) ◽  
pp. 13067-13074 ◽  
Author(s):  
C. Ragupathi ◽  
J. Judith Vijaya ◽  
L. John Kennedy ◽  
M. Bououdina

RSC Advances ◽  
2016 ◽  
Vol 6 (95) ◽  
pp. 92360-92370 ◽  
Author(s):  
Raunak Kumar Tamrakar ◽  
D. P. Bisen ◽  
Kanchan Upadhyay ◽  
I. P. Sahu ◽  
Manjulata Sahu

Er3+ doped Gd2O3 phosphors were prepared via a combustion synthesis method. The prepared phosphor emits visible green colour.


2011 ◽  
Vol 186 ◽  
pp. 7-10 ◽  
Author(s):  
Gui Yang Liu ◽  
Jun Ming Guo ◽  
Bao Sen Wang ◽  
Ying He

Single phase Al3+ doped LiMn2O4 has been prepared by flameless solution combustion synthesis method at 600oC for 1h. X-ray diffraction (XRD) and scanning electric microscope (SEM) were used to determine the phase composition and micro morphology of the products. XRD analysis indicates that the purities increase and the lattice parameters of the products decrease with increasing Al3+ content. Electrochemical test indicates that the cycling performance of the products with Al3+ doping are better than that of the product without Al3+ doping. The product LiAl0.10Mn1.90O4 gets the best electrochemical performance. At the current density of 30mA/g, the initial discharge capacity of LiAl0.10Mn1.90O4 is 124.8mAh/g, and after 20 cycles, the capacity retention is more than 89%. SEM investigation indicates that the particles of LiAl0.10Mn1.90O4 are sub-micron in size and well dispersed.


2021 ◽  
Vol 15 (2) ◽  
pp. 128-135
Author(s):  
Thaís Luiz ◽  
Fabio Nakagomi ◽  
Reny Renzetti ◽  
Guilherme Siqueira

The microwave assisted combustion synthesis (MACS) as a new, quick and low cost synthesis method was used for preparation of niobium pentoxide (Nb2O5) powders. The present paper investigated the effect of reactant concentrations (ammonium niobium oxalate, urea and ammonium nitrate) on the characteristics of Nb2O5 nanoparticles. Three samples were synthesized with stoichiometric ratio between the fuel and oxidant (C1), excess of oxidant (C2) and excess of fuel (C3). In all samples, Nb2O5 crystalline nanoparticles with irregular morphology were detected. The synthesis of nanoparticles with smaller diameter in the C2 and C3 samples was confirmed by greater values of band gap energy measured through UV-Visible diffuse reflectance spectroscopy (indicating quantum confinement) and by the Rietveld refinement of X-ray diffraction patterns. The results showed that the amounts of oxidant and fuel can change synthesis temperature, influencing the final characteristics of the particles, such as size and existent phases. In these cases the excess of oxidant and fuel in the C2 and C3 samples, respectively, decreases the average synthesis temperature and decelerates the particle growth and the formation of the monoclinic phase.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Shuang Shuang ◽  
Fengxia Yang ◽  
Zhiwei Li ◽  
Jiangtao Li ◽  
Xiangmin Meng

SiB6 powders were prepared by the “chemical oven” method from Si and B powders. Here combustion with acid pickling “two-step” mode replaces the traditional synthesis method which helps to avoid severe condition of high temperature and high pressure. It could realize maximum reaction temperature to about 2000°C, and the whole process just needs ∼30 s. The average diameter of products is ∼10 μm. And the raw material Si and B are ∼3 μm and ∼20 μm, respectively. The infrared emissivity of products was evaluated by UV-vis spectrum with absorption band around 250∼2500 nm. All five samples show higher emissivity over UV-visible light range with lower emissivity over near-infrared range. Typically, the sample’s Si/B ratio of 1 : 1 shows highest integral intensity for about 0.85 compared with other molar ratios. It can be used as a more simple and effective method to obtain infrared ceramic SiB6 with high emissivity.


Sign in / Sign up

Export Citation Format

Share Document