scholarly journals Cadmium promotes apoptosis and inflammation via the circ08409/miR-133a/TGFB2 axis in bovine mammary epithelial cells and mouse mammary gland

2021 ◽  
Vol 222 ◽  
pp. 112477
Author(s):  
Zhi Chen ◽  
Yan Liang ◽  
QinYue Lu ◽  
Mudasir Nazar ◽  
Yongjiang Mao ◽  
...  
2005 ◽  
Vol 45 (8) ◽  
pp. 757 ◽  
Author(s):  
C. Gray ◽  
Y. Strandberg ◽  
L. Donaldson ◽  
R. L. Tellam

Innate immunity plays a vital role in the protection of the bovine mammary gland against mastitis. Until recently, the migration of effector cells such as neutrophils and monocytes into the mammary gland was thought to provide the only defence against invading pathogens. However, mammary epithelial cells may also play an important role in the immune response, contributing to the innate defence of the mammary tissue through secretion of antimicrobial peptides and attraction of circulating immune effector cells. This paper reviews the innate immune pathways in mammary epithelial cells and examines their role in the initiation of an innate immune response to Gram-positive and Gram-negative bacteria.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yixin Huang ◽  
Liuhong Shen ◽  
Jing Jiang ◽  
Qipin Xu ◽  
Zhengzhong Luo ◽  
...  

AbstractBovine mammary epithelial cells (bMECs) are the main cells of the dairy cow mammary gland. In addition to their role in milk production, they are effector cells of mammary immunity. However, there is little information about changes in metabolites of bMECs when stimulated by lipopolysaccharide (LPS). This study describes a metabolomics analysis of the LPS-stimulated bMECs to provide a basis for the identification of potential diagnostic screening biomarkers and possible treatments for bovine mammary gland inflammation. In the present study, bMECs were challenged with 500 ng/mL LPS and samples were taken at 0 h, 12 h and 24 h post stimulation. Metabolic changes were investigated using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF MS) with univariate and multivariate statistical analyses. Clustering and metabolic pathway changes were established by MetaboAnalyst. Sixty-three differential metabolites were identified, including glycerophosphocholine, glycerol-3-phosphate, L-carnitine, L-aspartate, glutathione, prostaglandin G2, α-linolenic acid and linoleic acid. They were mainly involved in eight pathways, including D-glutamine and D-glutamic acid metabolism; linoleic acid metabolism; α-linolenic metabolism; and phospholipid metabolism. The results suggest that bMECs are able to regulate pro-inflammatory, anti-inflammatory, antioxidation and energy-producing related metabolites through lipid, antioxidation and energy metabolism in response to inflammatory stimuli.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47876 ◽  
Author(s):  
Sonia M. Rosenfield ◽  
Emma T. Bowden ◽  
Shani Cohen-Missner ◽  
Krissa A. Gibby ◽  
Virginie Ory ◽  
...  

2020 ◽  
Author(s):  
Danru Yang ◽  
Yinghuan Wu ◽  
Yanying Zhao

Abstract Background Bovine mastitis is the inflammatory response of the mammary gland with an utmost threat to the dairy industry worldwide. Cytokine networks fuel inflammation. The sensitive and subtle changes of the inflammatory cytokine network in healthy and mastitic bovine mammary gland may encourage the use of cytokines in the diagnosis and prognosis of bovine mastitis. Allograft inflammatory factor-1 (AIF-1) is a proinflammatory cytokine mainly secreted by immune cells and it plays a central role in the complex signaling network of inflammation activation. Therefore, we explored the possible role of bovine AIF-1 related to bovine mastitis in the present study. Results The average concentration of AIF-1 in milks suffering from mastitis was 2.5 fold of that in the healthy cows, while its value decreased in cows recovered from mastitis. Furthermore, recombinant bovine AIF-1 up-regulated TNF-α, IL-6, and monocyte chemoattractant protein 1 secretion from bovine mammary epithelial cells with NF-κB activating, then NF-κB signaling inhibitor BAY 11-7085 abolished the increase of these inflammatory cytokines secretion induced by AIF-1. Thereafter, AIF-1 impaired bovine mammary epithelial cell viability, induced cell membrane permeability and cell apoptosis with exacerbated nitric oxide and oxidative stress, activated caspase 3, decreased mitochondrial membrane potential and intracellular ATP concentration. Conclusion These results indicated that AIF-1 prompted inflammation mediator production of bovine mammary epithelial cells via NF-κB signaling. Moreover, it damaged epithelial cells by depressing cell viability, inducing cell membrane permeability and cell apoptosis, which might be related to bovine mastitis.


2016 ◽  
Vol 84 (6) ◽  
pp. 1682-1692 ◽  
Author(s):  
Martine Deplanche ◽  
Ludmila Alekseeva ◽  
Ksenia Semenovskaya ◽  
Chih-Lung Fu ◽  
Frederic Dessauge ◽  
...  

The role of the recently described interleukin-32 (IL-32) inStaphylococcus aureus-induced mastitis, an inflammation of the mammary gland, is unclear. We determined expression of IL-32, IL-6, and IL-8 inS. aureus- andEscherichia coli-infected bovine mammary gland epithelial cells. Using live bacteria, we found that inS. aureus-infected cells, induction of IL-6 and IL-8 expression was less pronounced than inE. coli-infected cells. Notably, IL-32 expression was decreased inS. aureus-infected cells, while it was increased inE. coli-infected cells. We identified the staphylococcal phenol-soluble modulin (PSM) peptides as key contributors to these effects, as IL-32, IL-6, and IL-8 expression by epithelial cells exposed topsmmutant strains was significantly increased compared to that in cells exposed to the isogenicS. aureuswild-type strain, indicating that PSMs inhibit the production of these interleukins. The use of genetically complemented strains confirmed this observation. Inasmuch as the decreased expression of IL-32, which is involved in dendritic cell maturation, impairs immune responses, our results support a PSM-dependent mechanism that allows for the development of chronicS. aureus-related mastitis.


2018 ◽  
Vol 9 (6) ◽  
pp. 985-995 ◽  
Author(s):  
R.F.S. Souza ◽  
L. Rault ◽  
N. Seyffert ◽  
V. Azevedo ◽  
Y. Le Loir ◽  
...  

Probiotics have been adopted to treat and prevent various diseases in humans and animals. They were notably shown to be a promising alternative to prevent mastitis in dairy cattle. This inflammation of the mammary gland is generally of infectious origin and generates extensive economic losses worldwide. In a previous study, we found that Lactobacillus casei BL23 was able to inhibit the internalisation of Staphylococcus aureus, one of the major pathogens involved in mastitis, into bovine mammary epithelial cells (bMEC). In this study, we further explored the capacity of this strain to modulate the innate immune response of bovine mammary epithelial cells during S. aureus infection. L. casei BL23 was able to decrease the expression of several pro-inflammatory cytokines, including interleukins 6, 8, 1α and 1β and tumour necrosis factor alpha, in S. aureus-stimulated bMEC, 8 h post-infection. On the other hand, L. casei did not impair the induction of defensins, such as lingual antimicrobial peptide and defensin β1 in the presence of S. aureus, and even slightly increased the induction of tracheal antimicrobial peptide during S. aureus infection. Finally, this strain did not alter the expression of the pattern recognition receptor nucleotide-binding oligomerisation domain proteins (NOD2). This study demonstrates that L. casei BL23 displayed anti-inflammatory properties on S. aureus-stimulated bMEC. These results open the way to further characterisation of the BL23 probiotic potential in a bovine mammary gland context and to a better understanding of how all these beneficial properties combine in vivo to combat mastitis pathogens.


1999 ◽  
Vol 161 (1) ◽  
pp. 77-87 ◽  
Author(s):  
YN Ilkbahar ◽  
G Thordarson ◽  
IG Camarillo ◽  
F Talamantes

Increasing evidence suggests that GH is important in normal mammary gland development. To investigate this further, we studied the distribution and levels of growth hormone receptor (GHR) and GH-binding protein (GHBP) in the mouse mammary gland. At three weeks of age, the epithelial component of the right fourth inguinal mammary gland of female mice was removed. These animals were then either maintained as virgins until they were killed or they were mated. One group of the mated mice was killed on day 18 of pregnancy and the remaining mated animals were allowed to carry their pups until term and were killed on day 6 of lactation. At the time of death, both the intact left and the de-epithelialized right mammary glands were collected from all three groups. Some of the intact glands served as a source of epithelial cells, free of stroma. The mRNA levels for GHR and GHBP were measured in intact glands, epithelia-cleared fat pads, and isolated mammary epithelial cells. GHR and GHBP mRNAs were expressed in both the mammary epithelium and stroma. However, the levels of both GHR and GHBP mRNAs were significantly higher in the stroma as compared with the epithelium component. This increase for both mRNAs was from 3- to 12-fold at each physiological state examined. In the intact gland, both GHR and GHBP transcripts were highest in virgins, declined during late pregnancy, and the lowest levels were found in the lactating gland. GHBP and GHR protein concentrations were also assessed in intact glands and epithelia-free fat pads. Similar to the mRNAs, GHR and GHBP protein levels (means+/-s.e.m.) in intact glands were highest in virgin mice (0.891+/-0.15 pmoles/mg protein and 0.136+/-0.26 pmoles/mg protein respectively), declined during late pregnancy (0. 354+/-0.111 pmoles/mg protein and 0.178+/-0.039 pmoles/mg protein respectively), and were lowest during lactation (0.096+0.037 pmoles/mg protein and 0.017+0.006 pmoles/mg protein respectively). Immunocytochemistry utilizing specific antisera against mouse (m) GHR and mGHBP revealed that the two proteins are localized to both the stroma and parenchyma of mouse mammary glands, with similar patterns of immunostaining throughout the different physiological stages analyzed. GHR immunolocalized to the plasma membrane and cytosol of mammary epithelial cells and adipocytes, whereas the GHBP immunostaining was nuclear and cytosolic. In conclusion, we report here that GHR and GHBP mRNAs and proteins are expressed in both the epithelium and the stroma of mammary glands of virgin, pregnant, and lactating mice. In intact glands, GHR and GHBP proteins, as well as their transcripts are higher in abundance in virgin relative to lactating mice. At all physiological stages, GHR and GHBP mRNA levels are higher in the stroma compared with the parenchyma. These findings indicate that the actions of GH in the mammary gland are both direct through its binding to the epithelia, and indirect by binding to the stroma and stimulation of IGF-I production which, in turn, affects mammary epithelial development.


Sign in / Sign up

Export Citation Format

Share Document