scholarly journals Flood susceptibility mapping using extremely randomized trees for Assam 2020 floods

2021 ◽  
pp. 101498
Author(s):  
Shruti Sachdeva ◽  
Bijendra Kumar
2021 ◽  
Vol 13 (14) ◽  
pp. 2786
Author(s):  
Roya Narimani ◽  
Changhyun Jun ◽  
Saqib Shahzad ◽  
Jeill Oh ◽  
Kyoohong Park

This paper proposes a novel hybrid method for flood susceptibility mapping using a geographic information system (ArcGIS) and satellite images based on the analytical hierarchy process (AHP). Here, the following nine multisource environmental controlling factors influencing flood susceptibility were considered for relative weight estimation in AHP: elevation, land use, slope, topographic wetness index, curvature, river distance, flow accumulation, drainage density, and rainfall. The weight for each factor was determined from AHP and analyzed to investigate critical regions that are more vulnerable to floods using the overlay weighted sum technique to integrate the nine layers. As a case study, the ArcGIS-based framework was applied in Seoul to obtain a flood susceptibility map, which was categorized into six regions (very high risk, high risk, medium risk, low risk, very low risk, and out of risk). Finally, the flood map was verified using real flood maps from the previous five years to test the model’s effectiveness. The flood map indicated that 40% of the area shows high flood risk and thus requires urgent attention, which was confirmed by the validation results. Planners and regulatory bodies can use flood maps to control and mitigate flood incidents along rivers. Even though the methodology used in this study is simple, it has a high level of accuracy and can be applied for flood mapping in most regions where the required datasets are available. This is the first study to apply high-resolution basic maps (12.5 m) to extract the nine controlling factors using only satellite images and ArcGIS to produce a suitable flood map in Seoul for better management in the near future.


2020 ◽  
Author(s):  
Tien‐Yin Chou ◽  
Thanh‐Van Hoang ◽  
Yao‐Min Fang ◽  
Quoc‐Huy Nguyen ◽  
Tuan Anh Lai ◽  
...  

2018 ◽  
Vol 11 (1) ◽  
pp. 62 ◽  
Author(s):  
Yi Wang ◽  
Haoyuan Hong ◽  
Wei Chen ◽  
Shaojun Li ◽  
Dragan Pamučar ◽  
...  

Floods are considered one of the most disastrous hazards all over the world and cause serious casualties and property damage. Therefore, the assessment and regionalization of flood disasters are becoming increasingly important and urgent. To predict the probability of a flood, an essential step is to map flood susceptibility. The main objective of this work is to investigate the use a novel hybrid technique by integrating multi-criteria decision analysis and geographic information system to evaluate flood susceptibility mapping (FSM), which is constructed by ensemble of decision making trial and evaluation laboratory (DEMATEL), analytic network process, weighted linear combinations (WLC) and interval rough numbers (IRN) techniques in the case study at Shangyou County, China. Specifically, we improve the DEMATEL method by applying IRN to determine connections in the network structure based on criteria and to accept imprecisions during collective decision making. The application of IRN can eliminate the necessity of additional information to define uncertain number intervals. Therefore, the quality of the existing data during collective decision making and experts’ perceptions that are expressed through an aggregation matrix can be retained. In this work, eleven conditioning factors associated with flooding were considered and historical flood locations were randomly divided into the training (70% of the total) and validation (30%) sets. The flood susceptibility map validates a satisfactory consistency between the flood-susceptible areas and the spatial distribution of the previous flood events. The accuracy of the map was evaluated by using objective measures of receiver operating characteristic (ROC) curve and area under the curve (AUC). The AUC values of the proposed method coupling with the WLC fuzzy technique for aggregation and flood susceptibility index are 0.988 and 0.964, respectively, which proves that the WLC fuzzy method is more effective for FSM in the study area. The proposed method can be helpful in predicting accurate flood occurrence locations with similar geographic environments and can be effectively used for flood management and prevention.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Omid Rahmati ◽  
Hamid Darabi ◽  
Mahdi Panahi ◽  
Zahra Kalantari ◽  
Seyed Amir Naghibi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document