Improving wildlife tracking using 3D information

2021 ◽  
pp. 101535
Author(s):  
Morris Klasen ◽  
Volker Steinhage
2007 ◽  
Vol 30 (4) ◽  
pp. 77
Author(s):  
Derek Cool ◽  
Shi Sherebrin ◽  
Jonathan Izawa ◽  
Joseph Chin ◽  
Aaron Fenster

Introduction: Transrectal ultrasound (TRUS) prostate biopsy (Bx) is currently confined to 2D information to both target and record 3D Bx locations. Accurate placement of Bx needles cannot be verified without 3D information, and recording Bx sites in 2D does not provide sufficient information to accurately guide the high incidence of repeat Bx. We have designed a 3D TRUS prostate Bx system that augments the current 2D TRUS system and provides tools for biopsy-planning, needle guidance, and recording of the biopsy core locations entirely in 3D. Methods: Our Bx system displays a 3D model of the patient’s prostate, which is generated intra-procedure from a collection of 2D TRUS images, representative of the particular prostate shape. Bx targets are selected, needle guidance is facilitated, and 3D Bx sites are recorded within the 3D context of the prostate model. The complete 3D Bx system was validated, in vitro, by performing standard ten-core Bx on anatomical phantoms of two patient’s prostates. The accuracy of the needle-guidance, Bx location recording, and 3D model volume and surface topology were validated against a CT gold standard. Results: The Bx system successfully reconstructed the 3D patient prostate models with a mean volume error of 3.2 ± 7.6%. Using the 3D system, needles were accurately guided to the pre-determined targets with a mean error of 2.26 ± 1.03 mm and the 3D locations of the Bx cores were accurately recorded with a mean distance error of 1.47 ± 0.79 mm. Conclusion: We have successfully developed a 3D TRUS prostate biopsy system and validated the system in vitro. A pilot study has been initiated to apply the system clinically.


Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


2017 ◽  
Vol 22 (5) ◽  
pp. 1433-1444 ◽  
Author(s):  
Huansheng Song ◽  
Xuan Wang ◽  
Cui Hua ◽  
Weixing Wang ◽  
Qi Guan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Albers ◽  
Angelika Svetlove ◽  
Justus Alves ◽  
Alexander Kraupner ◽  
Francesca di Lillo ◽  
...  

AbstractAlthough X-ray based 3D virtual histology is an emerging tool for the analysis of biological tissue, it falls short in terms of specificity when compared to conventional histology. Thus, the aim was to establish a novel approach that combines 3D information provided by microCT with high specificity that only (immuno-)histochemistry can offer. For this purpose, we developed a software frontend, which utilises an elastic transformation technique to accurately co-register various histological and immunohistochemical stainings with free propagation phase contrast synchrotron radiation microCT. We demonstrate that the precision of the overlay of both imaging modalities is significantly improved by performing our elastic registration workflow, as evidenced by calculation of the displacement index. To illustrate the need for an elastic co-registration approach we examined specimens from a mouse model of breast cancer with injected metal-based nanoparticles. Using the elastic transformation pipeline, we were able to co-localise the nanoparticles to specifically stained cells or tissue structures into their three-dimensional anatomical context. Additionally, we performed a semi-automated tissue structure and cell classification. This workflow provides new insights on histopathological analysis by combining CT specific three-dimensional information with cell/tissue specific information provided by classical histology.


2021 ◽  
Vol 11 (2) ◽  
pp. 582
Author(s):  
Zean Bu ◽  
Changku Sun ◽  
Peng Wang ◽  
Hang Dong

Calibration between multiple sensors is a fundamental procedure for data fusion. To address the problems of large errors and tedious operation, we present a novel method to conduct the calibration between light detection and ranging (LiDAR) and camera. We invent a calibration target, which is an arbitrary triangular pyramid with three chessboard patterns on its three planes. The target contains both 3D information and 2D information, which can be utilized to obtain intrinsic parameters of the camera and extrinsic parameters of the system. In the proposed method, the world coordinate system is established through the triangular pyramid. We extract the equations of triangular pyramid planes to find the relative transformation between two sensors. One capture of camera and LiDAR is sufficient for calibration, and errors are reduced by minimizing the distance between points and planes. Furthermore, the accuracy can be increased by more captures. We carried out experiments on simulated data with varying degrees of noise and numbers of frames. Finally, the calibration results were verified by real data through incremental validation and analyzing the root mean square error (RMSE), demonstrating that our calibration method is robust and provides state-of-the-art performance.


2021 ◽  
Vol 11 (4) ◽  
pp. 1892
Author(s):  
Ludovic Venet ◽  
Sarthak Pati ◽  
Michael D. Feldman ◽  
MacLean P. Nasrallah ◽  
Paul Yushkevich ◽  
...  

Histopathologic assessment routinely provides rich microscopic information about tissue structure and disease process. However, the sections used are very thin, and essentially capture only 2D representations of a certain tissue sample. Accurate and robust alignment of sequentially cut 2D slices should contribute to more comprehensive assessment accounting for surrounding 3D information. Towards this end, we here propose a two-step diffeomorphic registration approach that aligns differently stained histology slides to each other, starting with an initial affine step followed by estimating a deformation field. It was quantitatively evaluated on ample (n = 481) and diverse data from the automatic non-rigid histological image registration challenge, where it was awarded the second rank. The obtained results demonstrate the ability of the proposed approach to robustly (average robustness = 0.9898) and accurately (average relative target registration error = 0.2%) align differently stained histology slices of various anatomical sites while maintaining reasonable computational efficiency (<1 min per registration). The method was developed by adapting a general-purpose registration algorithm designed for 3D radiographic scans and achieved consistently accurate results for aligning high-resolution 2D histologic images. Accurate alignment of histologic images can contribute to a better understanding of the spatial arrangement and growth patterns of cells, vessels, matrix, nerves, and immune cell interactions.


Nanoscale ◽  
2021 ◽  
Author(s):  
Cristina Bran ◽  
Elias Saugar ◽  
José Ángel Fernández-Roldán ◽  
Rafael Perez del Real ◽  
Agustina Asenjo ◽  
...  

Advances in cylindrical nanowires for 3D information technologies profit from intrinsic curvature that introduces significant differences with regards to planar systems. A model is proposed to control the stochastic and...


2021 ◽  
Vol 11 (10) ◽  
pp. 4570
Author(s):  
Oliver Rothkamm ◽  
Johannes Gürtler ◽  
Jürgen Czarske ◽  
Robert Kuschmierz

Tomographic reconstruction allows for the recovery of 3D information from 2D projection data. This commonly requires a full angular scan of the specimen. Angular restrictions that exist, especially in technical processes, result in reconstruction artifacts and unknown systematic measurement errors. We investigate the use of neural networks for extrapolating the missing projection data from holographic sound pressure measurements. A bias flow liner was studied for active sound dampening in aviation. We employed a dense U-Net trained on synthetic data and compared reconstructions of simulated and measured data with and without extrapolation. In both cases, the neural network based approach decreases the mean and maximum measurement deviations by a factor of two. These findings can enable quantitative measurements in other applications suffering from limited angular access as well.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Majid Panahi ◽  
Ramin Jamali ◽  
Vahideh Farzam Rad ◽  
Mojtaba Khorasani ◽  
Ahamd Darudi ◽  
...  

AbstractIn several phenomena in biology and industry, it is required to understand the comprehensive behavior of sedimenting micro-particles in fluids. Here, we use the numerical refocusing feature of digital holographic microscopy (DHM) to investigate the slippage effect on micro-particle sedimentation near a flat wall. DHM provides quantitative phase contrast and three-dimensional (3D) imaging in arbitrary time scales, which suggests it as an elegant approach to investigate various phenomena, including dynamic behavior of colloids. 3D information is obtained by post-processing of the recorded digital holograms. Through analysis of 3D trajectories and velocities of multiple sedimenting micro-particles, we show that proximity to flat walls of higher slip lengths causes faster sedimentation. The effect depends on the ratio of the particle size to (1) the slip length and (2) its distance to the wall. We corroborate our experimental findings by a theoretical model which considers both the proximity and the particle interaction to a wall of different hydrophobicity in the hydrodynamic forces.


Sign in / Sign up

Export Citation Format

Share Document