scholarly journals Improvement in the unconfined compressive strength of sand test pieces cemented with calcium phosphate compound by addition of calcium carbonate

2012 ◽  
Vol 47 ◽  
pp. 264-267 ◽  
Author(s):  
Masaru Akiyama ◽  
Satoru Kawasaki
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michika Sawada ◽  
Kandi Sridhar ◽  
Yasuharu Kanda ◽  
Shinya Yamanaka

AbstractWe report a synthesis strategy for pure hydroxyapatite (HAp) using an amorphous calcium carbonate (ACC) colloid as the starting source. Room-temperature phosphorylation and subsequent calcination produce pure HAp via intermediate amorphous calcium phosphate (ACP). The pre-calcined sample undergoes a competitive transformation from ACC to ACP and crystalline calcium carbonate. The water content, ACC concentration, Ca/P molar ratio, and pH during the phosphorylation reaction play crucial roles in the final phase of the crystalline phosphate compound. Pure HAp is formed after ACP is transformed from ACC at a low concentration (1 wt%) of ACC colloid (1.71 < Ca/P < 1.88), whereas Ca/P = 1.51 leads to pure β-tricalcium phosphate. The ACP phases are precursors for calcium phosphate compounds and may determine the final crystalline phase.


2021 ◽  
Vol 12 (1) ◽  
pp. 139
Author(s):  
Yang Zhao ◽  
Qian Wang ◽  
Mengnan Yuan ◽  
Xi Chen ◽  
Zhiyang Xiao ◽  
...  

Microbial-induced calcium carbonate precipitation (MICP) is a new soil remediation technology, which can improve the physical and mechanical properties of soil by transporting bacterial solution and cementation solution to loose soil and precipitating calcium carbonate precipitation between soil particles through microbial mineralization. Based on this technique, the effects of different fine particle content and pore ratio on the physical and chemical properties of silt after reinforcement were studied. The content of calcium carbonate, the ability of silt to fixed bacteria, unconfined compressive strength (UCS), permeability coefficient and microstructure of the samples were determined. The results showed the following: In the process of calcium carbonate precipitation induced by microorganisms, more than 50% bacterial suspension remained on the surface of silt particles and their pores. The higher the bacterial fixation rate of silt, the more CaCO3 was generated during the solidification process. The bacterial fixation rate and CaCO3 content both decreased with the increase in the pore ratio and increased with the increase in the fine particle content. XRD and SEM images show that the calcium carbonate is mainly composed of spherical vaterite and acicular cluster aragonite. There is an obvious correlation between unconfined compressive strength and CaCO3 content of silt. When CaCO3 content accumulates to a certain extent, its strength will be significantly improved. The unconfined compressive strength of silt A with pore ratio of 0.75 and fine particle content of 75% is 2.22 MPa when the single injection amount of cementing fluid is 300 mL. The permeability coefficient of cured silt can be reduced by 1 to 4 orders of magnitude compared with that of untreated silt. In particular, the permeability of MICP-treated silt A is almost impermeable.


2013 ◽  
Vol 689 ◽  
pp. 324-328
Author(s):  
Xin Shan Zhuang ◽  
Can Zhao ◽  
Xu Min Wang

Unconfined compressive strength tests and calcium carbonate (CaCO3) quantitative chemical tests are conducted on artificially cemented sand which have different cement ratio (Cv) and curing time (t). Through the analysis of experimental results, the unconfined compressive strength (qu) of cemented sand are affected by curing time (t), cement ratio (Cv) and void ratio (η). Test results show that the longer the curing time (t), the lower the void/cement ratio (η/Cv) and the higher calcium carbonate/calcium hydroxide content ratio (CaCO3/Ca(OH)2 ratio or mC/mH), the higher the unconfined compressive strength (qu) of cemented sand. It is established the compressive strength equation based on the variables of cement ratio (Cv), void ratio (η) and curing time (t). By mC/mH-qu curve analysis, it is obtained the quantitative relation of chemical composition and mechanical strength.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (7) ◽  
pp. 29-34
Author(s):  
TEEMU PUHAKKA ◽  
ISKO KAJANTO ◽  
NINA PYKÄLÄINEN

Cracking at the fold is a quality defect sometimes observed in coated paper and board. Although tensile and compressive stresses occur during folding, test methods to measure the compressive strength of a coating have not been available. Our objective was to develop a method to measure the compressive strength of a coating layer and to investigate how different mineral coatings behave under compression. We used the short-span compressive strength test (SCT) to measure the in-plane compressive strength of a free coating layer. Unsupported free coating films were prepared for the measurements. Results indicate that the SCT method was suitable for measuring the in-plane compressive strength of a coating layer. Coating color formulations containing different kaolin and calcium carbonate minerals were used to study the effect of pigment particles’ shape on the compressive and tensile strengths of coatings. Latices having two different glass transition temperatures were used. Results showed that pigment particle shape influenced the strength of a coating layer. Platy clay gave better strength than spherical or needle-shaped carbonate pigments. Compressive and tensile strength decreased as a function of the amount of calcium carbonate in the coating color, particularly with precipitated calcium carbonate. We also assessed the influence of styrene-butadiene binder on the compressive strength of the coating layer, which increased with the binder level. The compressive strength of the coating layer was about three times the tensile strength.


Alloy Digest ◽  
2020 ◽  
Vol 69 (11) ◽  

Abstract Meehanite GB300 is a pearlitic gray cast iron that has a minimum tensile strength of 300 MPa (44 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. This grade exhibits high strength while still maintaining good thermal conductivity and good machinability. It is generally used for applications where the thermal conductivity requirements preclude the use of other higher-strength materials, such as spheroidal graphite cast irons, which have inferior thermal properties. This datasheet provides information on physical properties, hardness, tensile properties, and compressive strength as well as fatigue. It also includes information on low and high temperature performance as well as heat treating, machining, and joining. Filing Code: CI-75. Producer or source: Meehanite Metal Corporation.


Sign in / Sign up

Export Citation Format

Share Document