Suspended solids and nutrient retention in two constructed wetlands as determined from continuous data recorded with sensors

2019 ◽  
Vol 137 ◽  
pp. 65-75 ◽  
Author(s):  
Jari Koskiaho ◽  
Markku Puustinen
1997 ◽  
Vol 32 (1) ◽  
pp. 101-118 ◽  
Author(s):  
Q.J. ROCHFORT ◽  
W.E. Watt ◽  
J. Marsalek ◽  
B.C. Anderson ◽  
A.A. Crowder

Abstract Two subsurface flow constructed wetlands were tested for pollutant removal performance in conjunction with an on-line stormwater detention pond, in Kingston Township, Ontario. The 4.9 m2 wetland cells were filled with 9 mm limestone gravel, and planted with cattail, common reed and spike rush. Changes in nutrient (total organic carbon, PO43- and NH4+), suspended solids and metal (Cu, Pb, Zn) concentrations were used to assess performance. Contaminant removal occurred through a combination of physical, chemical and biological means. As with any biological system, variation in performance of stormwater wetlands can be expected to occur as a result of fluctuations in contaminant loading, contact time and ambient environmental conditions. Storm pond effluent was delivered in continuous flow through the wetlands (during baseflow and event conditions), with a detention time of 1 to 3 days. The wetlands were able to maintain removal rates of up to 39% for orthophosphate even during the more severe conditions of fall dieback. Average removal of suspended solids (46%) and dissolved metals (Cu 50%) remained similar throughout all tests. Organic carbon was reduced by less than 10% during these tests. Low nutrient levels in the pond effluent were supplemented by spiking with sources of carbon, nitrogen and phosphorus during pulsed loading conditions. Daily sampling produced a time series, which illustrated the rates of decline in concentration of nutrients. First order kinetic assimilation rates ranged from 1.7 d-1 for NH4002B to 0.12 d-1 for organic carbon, which were noticeably lower when compared with municipal and industrial wastewater treatment rates. Three methods of sizing stormwater wetlands (impervious surface area, volumetric load and kinetic reaction rates) were compared using the same design storm and data from this study. From this comparison it was seen that the kinetic sizing approach proved to be the most versatile, and allowed for adaptation to northern climatic conditions and anticipated nutrient loading.


2013 ◽  
Vol 68 (10) ◽  
pp. 2271-2278 ◽  
Author(s):  
Israa Abdulwahab Al-Baldawi ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Nurina Anuar ◽  
Fatihah Suja ◽  
Mushrifah Idris

One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.


2019 ◽  
Vol 100 ◽  
pp. 00067
Author(s):  
Monika Puchlik

The research was carried out for real wastewater collected directly from a fruit and vegetable plant located in north-eastern Poland. Effectiveness of organic matter metabolism expressed as BOD5, COD, total suspended solids depending on the load of pollutants and bio-preparation, was determined. The use of bio-preparation in the constructed wetland allowed to increase the efficiency of wastewater treatment throughout the research period: for BOD5 by 94% in deposit with bio-preparation and by 87% in deposit without the addition of bio-preparation; however, for COD – by 93% in deposit with the addition of bio-preparation and by 87% in deposit without bio-preparation added.


2014 ◽  
Vol 9 (3) ◽  
pp. 430-439 ◽  
Author(s):  
S. Troesch ◽  
F. Salma ◽  
D. Esser

Vertical flow constructed wetlands for small communities (<5,000 population equivalent) have been successfully developed in France since the 1990s (currently about 3'000 plants are in operation). This paper summarizes the results and efficiencies of 70 plants designed and built by Epur Nature or SINT. The results show clearly that the design performs well for organic matter removal and nitrification and makes sludge management easy. Therefore if well designed, such systems can achieve an outlet quality of BOD5 < 20 mg/L, chemical oxygen demand <90 mg/L, suspended solids <30 mg/L and TKN < 15 mg/L. In addition, some new configurations involving a French vertical first stage fed with raw sewage, patented by Epur Nature, are presented as an aid to reduce the global footprint.


2021 ◽  
Author(s):  
Ryan Chad Ian Cheung

Stormwater ponds have been implemented in many municipalities to control urban runoff and retain pollutants, such as nutrients and suspended solids. Two stormwater ponds in Toronto, Ontario were evaluated for their ability to retain nutrients and suspended solids and were also used to investigate mechanisms by which stormwater ponds remove nutrient pollutants, including the importance of deposition and internal loading. Over the entire study period, Hydro Pond East (HEP) retained 1415 mg of total suspended solids (TSS) and MAT retained 1127 mg of TSS. Both Hydro East Pond (HEP) and Mattamy Rouge (MAT) were net exporters of phosphorus (P) over the entire season, with 6.35 mol or 0.20 kg and 53.9 mol or 1.67 kg exported, respectively. HEP had net retention of 2672 mol or 37.4 kg of nitrogen (N) but MAT exported 264 mol or 3.7 kg of nitrogen over the entire study. This study has demonstrated that stormwater ponds have the ability to provide retention of nutrients and TSS, but their function may be enhanced as they may become exporters. However, the amount of nutrients exported was extremely low and may have been driven by the anomalously dry 2016 year in Toronto. Further research should be done on these same ponds to observe how they may perform under an anomalously wet year (e.g. 2017). There is a need for a future model to synthesize the data from literature on stormwater ponds to better understand their function to better help local water managers determine if these ponds are needed and how they may need to enhance their function.


2020 ◽  
Vol 24 (06) ◽  
pp. 91-102
Author(s):  
Zahraa S. Aswad ◽  
◽  
Ahmed H. Ali ◽  
Nadia M. Al-Mhana ◽  
◽  
...  

A vertical subsurface flow constructed wetland (VSSFCW) and a free surface flow constructed wetland (FSFCW) were set for the objective of comparison the performance of two systems in order to make a decision of the better one for future installation of wastewater treatment system and power generation. Both of the constructed wetlands were planted with Cyperus Alternifolius. During the observation period (19 days or 456 hours), environmental conditions such as pH, temperature, total chemical oxygen demand (COD), phosphate (PO4), nitrate (NO3) ,total suspended solids (TSS), total dissolved solids (TDS), Pb, Cu, and Cd removal efficiencies of the systems were determined. According to the results, final removal efficiencies for the VSSF and FWSF, respectively, were: COD (94.3% and 94.3%),PO4 (84.3% and 75.3%), NO3 (100% and 100%), TSS (96.8% and 85.6%), Pb (65.8% and 81.4%), Cu (more than 94.7% and 89.4%), Cd (85.7% and 88%). The treatment performances of the VSSF were better than that of the FWSF with regard to the removal of suspended solids and nutrients. In FWSF systems, electricity generation performed better than VSSF of 31.4 mV especially with batch system during one wastewater feed is loaded among all of the nineteen days with maximum voltage of 33.7 mV and decreased gradually as oxygen depletion in cathode chamber and less metabolism processes has occurred.


2013 ◽  
Vol 67 (12) ◽  
pp. 2739-2745 ◽  
Author(s):  
R. Amaral ◽  
F. Ferreira ◽  
A. Galvão ◽  
J. S. Matos

The use of constructed wetlands as a valuable and attractive method for combined sewer overflow (CSO) treatment has been demonstrated in several studies. In Portugal, a Mediterranean country having usually a long dry period, there are still no applications of this technology. The purpose of this research is to gather information and know-how required for the design and management of this type of infrastructure. A pilot-scale experimental setup for CSO treatment was installed and evaluated in situ, in terms of organic matter, total suspended solids and microorganism removal with emphasis on the results of the start-up. After 1 day of retention average removal efficiencies of 73–79% and 82–89% were obtained in terms of chemical oxygen demand (COD) and total suspended solids (TSS), respectively. During the remaining retention time a slower removal was observed. After 7 days, the COD removal efficiencies reached 86–91% and the TSS removal efficiencies reached 93–97%. On average, after 1 day, reductions of 1.2–2.0 log and 1.9–2.4 log, respectively, for total coliforms and Enterococcus were observed. For a retention time of 7 days these reductions attained 4.0–4.9 log and 4.4–5.3 log, respectively.


2020 ◽  
Author(s):  
Linda Grinberga ◽  
Ainis Lagzdins

<p>This study includes water quality monitoring data obtained since June, 2014 at the farm located in the middle part of Latvia. The water treatment system with two separate constructed wetlands was established to improve water quality in agricultural area. A surface flow constructed wetland received drainage runoff from the agricultural catchment basin. A subsurface flow constructed wetland was implemented to retain nutrients from the surface runoff collected in the area of impermeable pavements of the farmyard. As there are no other specific calculations recommended for the designing of constructed wetlands in Latvia, both wetlands were calculated basing on the surface area of the constructed wetland/catchment area ratio. The surface area of the subsurface flow constructed wetland was deigned by 1.2% of the catchment area and the ratio was 0.5 % for the surface flow constructed wetland.</p><p>Water samples were collected manually by grab sampling method once or twice per month basing on a flowrate. Water quality parameters such as total suspended solids (TSS), nitrate-nitrogen (NO3-N), ammonium-nitrogen (NH4-N), total nitrogen (TN), orthophosphate-phosphorus (PO4-P), and total phosphorus (TP), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) were analysed to monitor the performance of both wetlands. The concentrations at the inlet and outlet were compared to evaluate the efficiency of the water treatment.</p><p>The concentrations of NO3-N, NH4-N and TN were reduced on average by 21 %, 35 % and 20 %, respectively for the surface flow constructed wetland. PO4-P and TP concentrations were reduced on average by 31 % and 45 %, respectively for the surface flow constructed wetland. Total suspended solids were reduced by 17% at the outlet of the surface flow constructed wetland. However, in some cases, an increase in nutrient concentrations in water leaving the wetland was observed. The study showed the constant reduction of the PO4-P and TP concentrations 82 % and 83 %, respectively in the subsurface flow constructed wetland. The concentrations of NO3-N, NH4-N and TN were reduced on average by 14 %, 66 % and 53 %, respectively for the subsurface flow constructed wetland. BOD and COD reduction on average by 93 % and 83 %, respectively in for the subsurface flow constructed wetland indicated the ability of the treatment system to be adapted for wastewater treatment with high content of organic matter under the given climate conditions. This study outlined that the farmyards should receive a special attention regarding surface runoff management.</p>


2017 ◽  
Vol 18 (3) ◽  
pp. 956-967 ◽  
Author(s):  
Sai Kiran Natarajan ◽  
Dharmappa Hagare ◽  
Basant Maheshwari

Abstract Urban lakes and wetlands are being more commonly used for the purpose of storing and treating stormwater. In some instances, a combination of both constructed wetlands and lakes are designed to further improve the efficiency of the system. The main aim of this paper is to compare the water quality between two urban stormwater lakes. A standalone lake system and a combined wetland/lake system were monitored for water quality. The results indicate that an integrated wetland and urban lake performs better than the urban lake alone. The improved performance was particularly significant in terms of physical parameters such as turbidity, suspended solids, total solids (TS) and nutrients (particularly nitrogen). The significance of the wetland in the integrated system is highlighted as it helped, on an average, to reduce the concentration of TS, ammonium and phosphate by 50%, 62% and 53%, respectively.


Sign in / Sign up

Export Citation Format

Share Document