scholarly journals VERTICAL SUBSURFACE FLOW AND FREE SURFACE FLOW CONSTRUCTED WETLANDS FOR SUSTAINABLE POWER GENERATION AND REAL WASTEWATER SELECTIVE POLLUTANTS REMOVAL

2020 ◽  
Vol 24 (06) ◽  
pp. 91-102
Author(s):  
Zahraa S. Aswad ◽  
◽  
Ahmed H. Ali ◽  
Nadia M. Al-Mhana ◽  
◽  
...  

A vertical subsurface flow constructed wetland (VSSFCW) and a free surface flow constructed wetland (FSFCW) were set for the objective of comparison the performance of two systems in order to make a decision of the better one for future installation of wastewater treatment system and power generation. Both of the constructed wetlands were planted with Cyperus Alternifolius. During the observation period (19 days or 456 hours), environmental conditions such as pH, temperature, total chemical oxygen demand (COD), phosphate (PO4), nitrate (NO3) ,total suspended solids (TSS), total dissolved solids (TDS), Pb, Cu, and Cd removal efficiencies of the systems were determined. According to the results, final removal efficiencies for the VSSF and FWSF, respectively, were: COD (94.3% and 94.3%),PO4 (84.3% and 75.3%), NO3 (100% and 100%), TSS (96.8% and 85.6%), Pb (65.8% and 81.4%), Cu (more than 94.7% and 89.4%), Cd (85.7% and 88%). The treatment performances of the VSSF were better than that of the FWSF with regard to the removal of suspended solids and nutrients. In FWSF systems, electricity generation performed better than VSSF of 31.4 mV especially with batch system during one wastewater feed is loaded among all of the nineteen days with maximum voltage of 33.7 mV and decreased gradually as oxygen depletion in cathode chamber and less metabolism processes has occurred.

2020 ◽  
Author(s):  
Linda Grinberga ◽  
Ainis Lagzdins

<p>This study includes water quality monitoring data obtained since June, 2014 at the farm located in the middle part of Latvia. The water treatment system with two separate constructed wetlands was established to improve water quality in agricultural area. A surface flow constructed wetland received drainage runoff from the agricultural catchment basin. A subsurface flow constructed wetland was implemented to retain nutrients from the surface runoff collected in the area of impermeable pavements of the farmyard. As there are no other specific calculations recommended for the designing of constructed wetlands in Latvia, both wetlands were calculated basing on the surface area of the constructed wetland/catchment area ratio. The surface area of the subsurface flow constructed wetland was deigned by 1.2% of the catchment area and the ratio was 0.5 % for the surface flow constructed wetland.</p><p>Water samples were collected manually by grab sampling method once or twice per month basing on a flowrate. Water quality parameters such as total suspended solids (TSS), nitrate-nitrogen (NO3-N), ammonium-nitrogen (NH4-N), total nitrogen (TN), orthophosphate-phosphorus (PO4-P), and total phosphorus (TP), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) were analysed to monitor the performance of both wetlands. The concentrations at the inlet and outlet were compared to evaluate the efficiency of the water treatment.</p><p>The concentrations of NO3-N, NH4-N and TN were reduced on average by 21 %, 35 % and 20 %, respectively for the surface flow constructed wetland. PO4-P and TP concentrations were reduced on average by 31 % and 45 %, respectively for the surface flow constructed wetland. Total suspended solids were reduced by 17% at the outlet of the surface flow constructed wetland. However, in some cases, an increase in nutrient concentrations in water leaving the wetland was observed. The study showed the constant reduction of the PO4-P and TP concentrations 82 % and 83 %, respectively in the subsurface flow constructed wetland. The concentrations of NO3-N, NH4-N and TN were reduced on average by 14 %, 66 % and 53 %, respectively for the subsurface flow constructed wetland. BOD and COD reduction on average by 93 % and 83 %, respectively in for the subsurface flow constructed wetland indicated the ability of the treatment system to be adapted for wastewater treatment with high content of organic matter under the given climate conditions. This study outlined that the farmyards should receive a special attention regarding surface runoff management.</p>


Archaea ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xiu-lu Lang ◽  
Xiang Chen ◽  
Ai-ling Xu ◽  
Zhi-wen Song ◽  
Xin Wang ◽  
...  

Microorganisms play important roles in the reduction of organic and inorganic pollutants in constructed wetlands used for the treatment of wastewater. However, the diversity and structure of microbial community in constructed wetland system remain poorly known. In this study, the Illumina MiSeq Sequencing of 16S rDNA was used to analyze the bacterial and archaeal microbial community structures of soil and water in a free surface flow constructed wetland, and the differences of bacterial communities and archaeal compositions between soil and water were compared. The results showed that the Proteobacteria were the dominant bacteria, making up 35.38%~48.66% relative abundance. Euryarchaeotic were the absolute dominant archaea in the influent sample with the relative abundance of 93.29%, while Thaumarchaeota showed dominance in the other three samples, making up 50.58%~75.70%. The relative abundances of different species showed great changes in bacteria and archaea, and the number of dominant species in bacteria was much higher than that in archaea. Compared to archaea, the community compositions of bacteria were more abundant and the changes were more significant. Meanwhile, bacteria and archaea had large differences in compositions between water and soil. The microbial richness in water was significantly higher than that in soil. Simultaneously, soil had a significant enrichment effect on some microbial flora.


2005 ◽  
Vol 52 (12) ◽  
pp. 243-250 ◽  
Author(s):  
Z. Ujang ◽  
E. Soedjono ◽  
M.R. Salim ◽  
R.B. Shutes

Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 499-506 ◽  
Author(s):  
A.A. Meutia

Wastewater treatment by constructed wetland is an appropriate technology for tropical developing countries like Indonesia because it is inexpensive, easily maintained, and has environmentally friendly and sustainable characteristics. The aim of the research is to examine the capability of constructed wetlands for treating laboratory wastewater at our Center, to investigate the suitable flow for treatment, namely vertical subsurface or horizontal surface flow, and to study the effect of the seasons. The constructed wetland is composed of three chambered unplanted sedimentation tanks followed by the first and second beds, containing gravel and sand, planted with Typha sp.; the third bed planted with floating plant Lemna sp.; and a clarifier with two chambers. The results showed that the subsurface flow in the dry season removed 95% organic carbon (COD) and total phosphorus (T-P) respectively, and 82% total nitrogen (T-N). In the transition period from the dry season to the rainy season, COD removal efficiency decreased to 73%, T-N increased to 89%, and T-P was almost the same as that in the dry season. In the rainy season COD and T-N removal efficiencies increased again to 95% respectively, while T-P remained unchanged. In the dry season, COD and T-P concentrations in the surface flow showed that the removal efficiencies were a bit lower than those in the subsurface flow. Moreover, T-N removal efficiency was only half as much as that in the subsurface flow. However, in the transition period, COD removal efficiency decreased to 29%, while T-N increased to 74% and T-P was still constant, around 93%. In the rainy season, COD and T-N removal efficiencies increased again to almost 95%. On the other hand, T-P decreased to 76%. The results show that the constructed wetland is capable of treating the laboratory wastewater. The subsurface flow is more suitable for treatment than the surface flow, and the seasonal changes have effects on the removal efficiency.


Author(s):  
Shalini Saxena

Land areas which are wet during part or all of the year are referred as wetlands. Constructed wetlands are manmade systems that mimic the functions of natural wetlands and applied for wastewater treatment. Aim of the present study is to investigate the feasibility of using a Tracheophyte, Phragmiteskarka in constructed wetland for treatment of wastewater in an public park. The daily inlet and outlet wastewater physico-chemical parameters were analysed during the period of two months. The parameters studied were pH, BOD, COD, DO, Total Suspended Solids, Total Dissolved Solids, Nitrogen and Phosphorus. The percentage removal of the parameters were analysed and studied until the percent removal rate gets stabilized. The study showed that the subsurface flow constructed wetlands are best alternative among modern treatments.


HortScience ◽  
2013 ◽  
Vol 48 (9) ◽  
pp. 1103-1108 ◽  
Author(s):  
Sarah A. White

The need to protect our water resources and increasing public awareness of the importance of cleaner water for ecological and human health reasons are driving regulations limiting nutrient release from traditionally exempt, non-point source agricultural contributors. Modification of production practices alone may not be adequate to meet regulated nutrient criterion limits for irrigation and stormwater runoff entering surface waters. Three constructed wetland technologies are well suited to help agricultural producers meet current and future regulations. The first two technologies, surface- and subsurface-flow constructed wetlands, have been in use for over 40 years to cleanse various types of wastewater, whereas floating treatment wetlands are an emerging remediation technology with potential for both stormwater and agricultural runoff treatment applications. The mechanisms driving removal of both nitrogen (N) and phosphorus (P) in constructed wetland systems are discussed. Surface-flow constructed wetlands remediate N contaminants from both container nursery and greenhouse production wastewater, whereas P remediation is variable and tied most closely to active plant growth as the constructed wetland ages. Subsurface-flow constructed wetlands effectively remediate N from production wastewater and can be tailored to increase consistency of P remediation through selection of P-sorbing root-bed substrates. Floating treatment wetlands effectively remediate both N and P with a designed surface area of a pond covered depending on the target effluent concentration or regulated total maximum daily load. The choice of treatment technology applied by growers to meet regulated water quality targets should be based on both economic and site-specific considerations.


2013 ◽  
Vol 60 ◽  
pp. 10-18 ◽  
Author(s):  
Bram T.M. Mulling ◽  
Rob M. van den Boomen ◽  
Theo H.L. Claassen ◽  
Harm G. van der Geest ◽  
Joost W.N.M. Kappelhof ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2200
Author(s):  
Georgios D. Gikas ◽  
Vassiliki A. Papaevangelou ◽  
Vassilios A. Tsihrintzis ◽  
Maria Antonopoulou ◽  
Ioannis K. Konstantinou

We assessed constructed wetland (CW) performance in the removal of six emerging pollutants (EPs) from university campus wastewater. The EPs considered were: diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP), bis(2-ehtylxexyl) phthalate (DEHP), tris(1-chloro-2-propyl) phosphate (TCPP) and caffeine (CAF). Six pilot-scale CWs, i.e., three horizontal subsurface flow (HSF) and three vertical flow (VF), with different design configurations were used: two types of plants and one unplanted for both the HSF and the VF, two hydraulic retention times (HRT) for the HSF, and two wastewater feeding strategies for the VF units. The results showed that the median removals in the three HSF-CWs ranged between 84.3 and 99.9%, 79.0 and 95.7%, 91.4 and 99.7%, 72.2 and 81.0%, 99.1 and 99.6%, and 99.3 and 99.6% for DEP, DIBP, DNOP, DEHP, TCPP, and CAF, respectively. In the three VF-CWs, the median removal efficiencies range was 98.6–99.4%, 63.6–98.0%, 96.6–97.8%, 73.6–94.5%, 99.3–99.5% and 94.4–96.3% for DEP, DIBP, DNOP, DEHP, TCPP and CAF, respectively. The study indicates that biodegradation and adsorption onto substrate were the most prevalent removal routes of the target EPs in CWs.


Sign in / Sign up

Export Citation Format

Share Document