scholarly journals Improved Sound Absorption Properties of Polyurethane Foam Mixed with Textile Waste

2016 ◽  
Vol 85 ◽  
pp. 559-565 ◽  
Author(s):  
Ancuţa-Elena Tiuc ◽  
Horaţiu Vermeşan ◽  
Timea Gabor ◽  
Ovidiu Vasile
Author(s):  
Nathapong Sukhawipat ◽  
Thanathach Yingshataporn-a-nan ◽  
Tanapat Minanandana ◽  
Kitchapat Puksuwan ◽  
Laksana Saengdee ◽  
...  

2014 ◽  
Vol 660 ◽  
pp. 541-546 ◽  
Author(s):  
Qumrul Ahsan ◽  
Chia Pooi Ching ◽  
Mohd Yuhazri bin Yaakob

Spent tea leaves (STL) from tea producing factories can be considered as new resources for sound absorbing polyurethane (PU) matrix composite materials because STL are rich in polyphenols (tannins) which cause high durability, high resistance to fungal and termites, and high resistance to fire. The research aims to study the physical characteristics of STL and the effect of dispersion morphology of STL on the sound absorption properties of polyurethane foam composites by varying filler loading. Three grades of STL fibers either as received or granulated are used in this study, namely BM-FAE and SWBHE derived from the stalk while FIBER-FAE derived from the leaves of the tea plant. The PU/STL composites are fabricated through open molding method with a fiber loading of 16 wt. %. The fabricated composites are then subjected to physical and sound absorption testing as well as microscopic observations to analyze the distribution of filler in composite. The study shows that as-received FIBER-FAE spent tea leaves provide the best sound absorption coefficient and for composites using granulated fibers from any grade have lower sound absorption coefficient. These results show that a novel kind of sound absorption materials with the recycling of waste materials can be obtained for the solution of noise and environmental pollution.


2009 ◽  
Vol 50 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Tsuyoshi Yamashita ◽  
Kazuhiro Suzuki ◽  
Hideki Adachi ◽  
Souichiro Nishino ◽  
Yo Tomota

RSC Advances ◽  
2018 ◽  
Vol 8 (37) ◽  
pp. 20968-20975 ◽  
Author(s):  
Xueliang Jiang ◽  
Zhijie Wang ◽  
Zhen Yang ◽  
Fuqing Zhang ◽  
Feng You ◽  
...  

BT/NBR-PU foam composites with two different stratified structures including double-layer and alternating multilayered have excellent low-frequency sound absorption performance.


2019 ◽  
Vol 56 (4) ◽  
pp. 1021-1027
Author(s):  
Ancuta Elena Tiuc ◽  
Ovidiu Nemes ◽  
HoraŢiu VermeŞan ◽  
Daniela Roxana Tamas Gavrea ◽  
Ovidiu Vasile

Polyurethane foam wastes is one of the environmental problems for which are not still the efficient solutions of valorization. This paper presents the possibility of recovering polyurethane foam waste by obtaining some new materials with sound absorption properties. The polyurethane foam wastes were ground and mixed, in proportion of 0, 3, 5, 7 and 12 wt%, with bicomponent polyurethane foam as a binder, resulting 5 new materials. The sound-absorbing properties of the new materials have been determined and it can be observed that the sound-absorbing properties of rigid polyurethane foam with closed pores can be improved by adding polyurethane foam waste to its structure. In addition, the mechanical properties and thermal conductivity of the new materials were studied.


2012 ◽  
Vol 37 (4) ◽  
pp. 515-520 ◽  
Author(s):  
Bülent Ekici ◽  
Aykut Kentli ◽  
Haluk Küçük

Abstract The sound absorption property of polyurethane (PU) foams loaded with natural tea-leaf fibers and luffa cylindrica (LC) has been studied. The results show a significant improvement in the sound absorption property parallel to an increase in the amount of tea-leaf fibers (TLF). Using luffa-cylindrica as a filler material improves sound absorption properties of soft foam at all frequency ranges. Moreover, an increase in the thickness of the sample resulted in an improvement of the sound absorption property. It is pleasing to see that adding tea-leaf fibers and luffa-cylindrica to the polyurethane foam demonstrate a significant contribution to sound absorption properties of the material and it encourages using environmental friendly products as sound absorption material in further studies.


2021 ◽  
Vol 13 (2) ◽  
pp. 637
Author(s):  
Tomas Astrauskas ◽  
Tomas Januševičius ◽  
Raimondas Grubliauskas

Studies on recycled materials emerged during recent years. This paper investigates samples’ sound absorption properties for panels fabricated of a mixture of paper sludge (PS) and clay mixture. PS was the core material. The sound absorption was measured. We also consider the influence of an air gap between panels and rigid backing. Different air gaps (50, 100, 150, 200 mm) simulate existing acoustic panel systems. Finally, the PS and clay composite panel sound absorption coefficients are compared to those for a typical commercial absorptive ceiling panel. The average sound absorption coefficient of PS-clay composite panels (αavg. in the frequency range from 250 to 1600 Hz) was up to 0.55. The resulting average sound absorption coefficient of panels made of recycled (but unfinished) materials is even somewhat higher than for the finished commercial (finished) acoustic panel (αavg. = 0.51).


Sign in / Sign up

Export Citation Format

Share Document