scholarly journals Numerical Studies of Methane Gas Production from Hydrate Decomposition by Depressurization in Porous Media

2017 ◽  
Vol 105 ◽  
pp. 250-255 ◽  
Author(s):  
Minghao Yu ◽  
Weizhong Li ◽  
Mingjun Yang ◽  
Lanlan Jiang ◽  
Yongchen Song
2012 ◽  
Vol 21 (4) ◽  
pp. 381-392 ◽  
Author(s):  
Xuke Ruan ◽  
Mingjun Yang ◽  
Yongchen Song ◽  
Haifeng Liang ◽  
Yanghui Li

2021 ◽  
Vol 9 ◽  
Author(s):  
Xuke Ruan ◽  
Chun-Gang Xu ◽  
Ke-Feng Yan ◽  
Xiao-Sen Li

The hydrate decomposition kinetics is a key factor for the gas production from hydrate-saturated porous media. Meanwhile, it is also related to other factors. Among them, the permeability and hydrate dissociation surface area on hydrate dissociation kinetics have been studied experimentally and numerically in this work. First, the permeability to water was experimentally determined at different hydrate saturations (0%, 10%, 17%, 21%, 34%, 40.5%, and 48.75%) in hydrate-bearing porous media. By the comparison of permeability results from the experimental measurements and theoretical calculations with the empirical permeability models, it was found that, for the lower hydrate saturations (less than 40%), the experimental results of water permeability are closer to the predicted values of the grain-coating permeability model, whereas, for the hydrate saturation above 40%, the tendencies of hydrate accumulation in porous media are quite consistent with the pore-filling hydrate habits. A developed two-dimensional core-scale numerical code, which incorporates the models for permeability and hydrate dissociation surface area along with the hydrate accumulation habits in porous media, was used to investigate the kinetics of hydrate dissociation by depressurization, and a “shrinking-core” hydrate dissociation driven by the radial heat transfer was found in the numerical simulations of hydrate dissociation induced by depressurization in core-scale porous media. The numerical results indicate that the gas production from hydrates in porous media has a strong dependence on the permeability and hydrate dissociation surface area. Meanwhile, the simulation shows that the controlling factor for the dissociation kinetics of hydrate switches from permeability to hydrate dissociation surface area depending on the hydrate saturation and hydrate accumulation habits in porous media.


2021 ◽  
Author(s):  
Ermeng Zhao ◽  
Jian Hou ◽  
Yunkai Ji ◽  
Lu Liu ◽  
Yongge Liu ◽  
...  

Abstract Natural gas hydrate is widely distributed in the permafrost and marine deposits, and is regarded as an energy resource with great potential. The low-frequency electric heating assisted depressurization (LF-EHAD) has been proven to be an efficient method for exploiting hydrate sediments, which involves complex multi-physics processes, i.e. current conduction, multiphase flow, chemical reaction and heat transfer. The physical properties vary greatly in different hydrate sediments, which may profoundly affect the hydrate decomposition in the LF-EHAD process. In order to evaluate the influence of hydrate-bearing sediment properties on the gas production behavior and energy utilization efficiency of the LF-EHAD method, a geological model was first established based on the data of hydrate sediments in the Shenhu Area. Then, the influence of permeability, porosity, thermal conductivity, specific heat capacity, hydrate saturation and hydrate-bearing layer (HBL) thickness on gas production behavior is comprehensively analyzed by numerical simulation method. Finally, the energy efficiency ratio under different sediment properties is compared. Results indicate that higher gas production is obtained in the high-permeability hydrate sediments during depressurization. However, after the electric heating is implemented, the gas production first increases and then tends to be insensitive as the permeability decreases. With the increasing of porosity, the gas production during depressurization decreases due to the low effective permeability; while in the electric heating stage, this effect is reversed. High thermal conductivity is beneficial to enhance the heat conduction, thus promoting the hydrate decomposition. During depressurization, the gas production is enhanced with the increase of specific heat capacity. However, more heat is consumed to increase the reservoir temperature during electric heating, thereby reducing the gas production. High hydrate saturation is not conducive to depressurization because of the low effective permeability. After electric heating, the gas production increases significantly. High HBL thickness results in a higher gas production during depressurization, while in the electric heating stage, the gas production first increases and then remains unchanged with the increase of thickness, due to the limited heat supply. The comparison results of energy efficiency suggest that electric heating is more advantageous for hydrate sediments with low permeability, high porosity, high thermal conductivity, low specific heat capacity, high hydrate saturation and high HBL thickness. The findings in this work can provide a useful reference for evaluating the application of the LF-EHAD method in gas hydrate sediments.


2020 ◽  
Vol 18 (2) ◽  
pp. 191
Author(s):  
Muchamad Muchlas ◽  
Siti Chuzaemi ◽  
Mashudi Mashudi

<p class="MDPI17abstract"><strong>Objective: </strong>The purpose of this research was to evaluate the effect supplementation of mimosa powder as a source of condensed tannins and a single fatty acid, myristic acid, in a complete feed based on corn stover (<em>Zea mays</em>) using the in-vitro gas production method. This research has been carried out at the Animal Nutrition and Food Laboratory, Faculty of Animal Husbandry, Brawijaya University. The time of the research was conducted in August until December 2019.</p><p class="MDPI17abstract"><strong>Methods: </strong>The experimental design used randomized complete block design by ANOVA consisting four treatments and three replications which were P1= a complete feed based on corn stover (<em>Zea mays</em>) as control Diet (CD) (40% corn stover + 60 % concentrate), P2= (CD) + Mimosa Powder(MP) 1.5 %/kg DM + myristic acid (MA)2% /kg DM, P3= CD + MP 1.5 % /kg DM + MA 3% /kg DM, and P4= CD + MP 1.5 %/kg DM + MA 4 %/kg DM.</p><p class="MDPI17abstract"><strong>Results: </strong>The results showed that the treatments affected total gas production (p&lt;0.01). The highest value for total gas production was found in P1 (86.67 ml/500 mg DM) and the lowest was found in P3 (73.30 ml/500 mg DM). The results showed that gas production decreased concurrently with the increase of MA level. In vitro methane gas and carbon dioxide production was showed different (p&lt;0.05) from the control treatment. The lowest concentration of methane production was in P4 (82863.07 ppm) and the highest concentration was in treatment P1 86530.89 ppm. The highest total carbon dioxide content was P1 (436711.57 ppm) and the lowest concentration was P3 (350287.72 ppm).</p><p class="MDPI17abstract"><strong>Conclusions: </strong>The results of the research concluded that the addition of mimosa powder and 3 different levels of myristic acid in a complete feed based on corn stover can increase the nutritional value of a complete feed and reduce the production of methane gas.</p>


2021 ◽  
Author(s):  
Azeez Gbenga Aregbe ◽  
Ayoola Idris Fadeyi

Abstract Clathrate hydrates are non-stoichiometric compounds of water and gas molecules coexisting at relatively low temperatures and high pressures. The gas molecules are trapped in cage-like structures of the water molecules by hydrogen bonds. There are several hydrate deposits in permafrost and oceanic sediments with an enormous amount of energy. The energy content of methane in hydrate reservoirs is considered to be up to 50 times that of conventional petroleum resources, with about 2,500 to 20,000 trillion m3 of methane gas. More than 220 hydrate deposits in permafrost and oceanic sediments have been identified to date. The exploration and production of these deposits to recover the trapped methane gas could overcome the world energy challenges and create a sustainable energy future. Furthermore, global warming is a major issue facing the world at large and it is caused by greenhouse gas emissions such as carbon dioxide. As a result, researchers and organizations have proposed various methods of reducing the emission of carbon dioxide gas. One of the proposed methods is the geological storage of carbon dioxide in depleted oil and gas reservoirs, oceanic sediments, deep saline aquifers, and depleted hydrate deposits. Studies have shown that there is the possibility of methane gas production and carbon dioxide storage in hydrate reservoirs using the injection of carbon dioxide and nitrogen gas mixture. However, the conventional hydrocarbon production methods cannot be used for the hydrate reservoirs due to the nature of these reservoirs. In addition, thermal stimulation and depressurization are not effective methods for methane gas production and carbon sequestration in hydrate-bearing sediments. Therefore, the gas replacement method for methane production and carbon dioxide storage in clathrate hydrate is investigated in this paper. The research studies (experiments, modeling/simulation, and field tests) on CO2/N2 gas mixture injection for the optimization of methane gas recovery in hydrate reservoirs are reviewed. It was discovered that the injection of the gas mixture enhanced the recovery process by replacing methane gas in the small and large cages of the hydrate. Also, the presence of N2 molecules significantly increased fluid injectivity and methane recovery rate. In addition, a significant amount of free water was not released and the hydrate phase was stable during the replacement process. It is an effective method for permanent storage of carbon dioxide in the hydrate layer. However, further research studies on the effects of gas composition, particle size, and gas transport on the replacement process and swapping rate are required.


Sign in / Sign up

Export Citation Format

Share Document