Evaluating agronomic adaptation options to increasing heat stress under climate change during wheat grain filling in France

2012 ◽  
Vol 39 ◽  
pp. 62-70 ◽  
Author(s):  
David Gouache ◽  
Xavier Le Bris ◽  
Matthieu Bogard ◽  
Olivier Deudon ◽  
Christian Pagé ◽  
...  
2020 ◽  
Vol 12 (3) ◽  
pp. 515-528
Author(s):  
Danielle Newport ◽  
David B. Lobell ◽  
Balwinder-Singh ◽  
Amit K. Srivastava ◽  
Preeti Rao ◽  
...  

ABSTRACTClimate change is predicted to negatively impact wheat yields across northern India, primarily as a result of increased heat stress during grain filling at the end of the growing season. One way that farmers may adapt is by sowing their wheat earlier to avoid this terminal heat stress. However, many farmers in the eastern Indo-Gangetic Plains (IGP) sow their wheat later than is optimal, likely leading to yield reductions. There is limited documentation of why farmers sow their wheat late and the potential constraints to early sowing. Our study uses data from 256 farmers in Arrah, Bihar, a region in the eastern IGP with late wheat sowing, to identify the socioeconomic, biophysical, perceptional, and management factors influencing wheat-sowing-date decisions. Despite widespread awareness of climate change, we found that farmers did not adopt strategies to adapt to warming temperatures and that wheat-sowing dates were not influenced by perceptions of climate change. Instead, we found that the most important factors influencing wheat-sowing-date decisions were irrigation type and cropping decisions during the monsoon season prior to the winter wheat growing season. Specifically, we found that using canal irrigation instead of groundwater irrigation, planting rice in the monsoon season, transplanting rice, and transplanting rice later during the monsoon season were all associated with delayed wheat sowing. These results suggest that there are system constraints to sowing wheat on time, and these factors must be addressed if farmers are to adapt wheat-sowing-date decisions in the face of warming temperatures.


MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 71-78
Author(s):  
SAON BANERJEE ◽  
KUSHAL SARMAH ◽  
ASIS MUKHERJEE ◽  
ABDUS SATTAR ◽  
PINTOO BANDOPADHYAY

Potato is the most important non-cereal crop in the world and the most prominent winter season crop in India. Growth and yield of potato crop is very much sensitive to higher temperatures and the moisture stress. Hence, the anticipated increase of temperature due to global warming and climatic variability will have anadverse impact on potato production. Keeping this in view, a research work was carried out with the objectives to assess the impact of climate change on potato production and evaluating agronomic adaptation options through a crop growth simulation model (CGSM). Field experiments were carried out to prepare the minimum dataset for calibration and validation of one CGSM, namely InfoCrop. After validation, the model was used to predict the future tuber yield of ten selected stations situated under different agroclimatic regions of the State. In the future scenario 2050, the simulated yield for mid November planted crop likely to be about 11% less than the present level of mean yield. If the crop is planted in December, the percentage of yield reduction may be around 25%.The projected yield reduction, for the stations of higher latitude, is found to be negligible. Three possible agronomic adaptation options, viz., adjustment of date of planting, increase of seed rate and varying sprout length of seed tubers, have been tried as adaptation strategies to combat the adverse effects of climate change. It is concluded that the mid-November planting and longer sprout length will be the best adaptation option. However, the enhanced seed rate is not a viable adaptation option.


Author(s):  
Bing Liu ◽  
Dongzheng Zhang ◽  
Huxing Zhang ◽  
Senthold Asseng ◽  
Tingwei Yin ◽  
...  

Abstract Warming due to climate change has profound impacts on regional crop yields, and this includes impacts from rising mean growing season temperature and heat stress events. Adapting to these two impacts could be substantially different, and the overall contribution of these two factors on the effects of climate warming and crop yield is not known. This study used the improved WheatGrow model, which can reproduce the effects of temperature change and heat stress, along with detailed information from 19 location-specific cultivars and local agronomic management practices at 129 research stations across the main wheat-producing region of China, to quantify the regional impacts of temperature increase and heat stress separately on wheat in China. Historical climate, plus two future low-warming scenarios (1.5/2.0oC warming above pre-industrial) and one future high-warming scenario (RCP8.5), were applied using the crop model, without considering elevated CO2 effects. The results showed that heat stress and its yield impact were more severe in the cooler northern sub-regions than the warmer southern sub-regions with historical and future warming scenarios. Heat stress was estimated to reduce wheat yield in most of northern sub-regions by 2.0% - 4.0% (up to 29% in extreme years) under the historical climate. Climate warming is projected to increase heat stress events in frequency and extent, especially in northern sub-regions. Surprisingly, higher warming did not result in more yield-impacting heat stress compared to low-warming, due to advanced phenology with mean warming and finally avoiding heat stress events during grain filling in summer. Most negative impacts of climate warming are attributed to increasing mean growing-season temperature, while changes in heat stress are projected to reduce wheat yields by an additional 1.0% to 1.5% in northern sub-regions. Adapting to climate change in China must consider the different regional and temperature impacts to be effective.


1991 ◽  
Vol 42 (1) ◽  
pp. 21 ◽  
Author(s):  
CS Blumenthal ◽  
IL Batey ◽  
F Bekes ◽  
CW Wrigley ◽  
EWR Barlow

Wheat plants exposed to higher than usual temperatures during ripening produced grain with weaker dough properties in glasshouse, field experiments and crop samples. In a review of Prime Hard wheat samples from 1960/61 to 1988/89, those seasons when the dough properties were particularly weak coincided with the years when the number of hours over 35�C during the grain filling period (October to December) was greatest. A five-day period of heat stress in 1988 provided an opportunity to directly investigate the effects of heat stress in the field. A weakening of dough properties was shown, for four varieties, by longer dough development times and faster breakdown in the Farinograph and also by shorter resistance to extension (at 5 cm) in the Extensograph. These (and similar changes for glasshouse grown grain) were accompanied by an increase in the proportion of gliadin (monomeric) proteins. That this increase was associated with the heat stress was shown by demonstrating increased accumulation of 14C amino acids into the gliadin fraction for heat-stressed heads in culture. These results support the hypothesis that episodes of high temperature during grain filling activate the heat shock elements of gliadin genes in wheat causing the mature grain to contain more gliadin and thus to produce weaker doughs.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


2021 ◽  
Vol 293 ◽  
pp. 112861
Author(s):  
Ana Iglesias ◽  
Luis Garrote ◽  
Isabel Bardají ◽  
David Santillán ◽  
Paloma Esteve

2021 ◽  
Vol 19 (1) ◽  
pp. 74-89
Author(s):  
Amandeep Kaur ◽  
Parveen Chhuneja ◽  
Puja Srivastava ◽  
Kuldeep Singh ◽  
Satinder Kaur

AbstractAddressing the impact of heat stress during flowering and grain filling is critical to sustaining wheat productivity to meet a steadily increasing demand from a rapidly growing world population. Crop wild progenitor species of wheat possess a wealth of genetic diversity for several biotic and abiotic stresses, and morphological traits and can serve as valuable donors. The transfer of useful variation from the diploid progenitor, Aegilops tauschii, to hexaploid wheat can be done through the generation of synthetic hexaploid wheat (SHW). The present study targeted the identification of potential primary SHWs to introduce new genetic variability for heat stress tolerance. Selected SHWs were screened for different yield-associated traits along with three advanced breeding lines and durum parents as checks for assessing terminal heat stress tolerance under timely and late sown conditions for two consecutive seasons. Heat tolerance index based on the number of productive tillers and thousand grain weight indicated that three synthetics, syn9809 (64.32, 78.80), syn14128 (50.30, 78.28) and syn14135 (58.16, 76.03), were able to endure terminal heat stress better than other SHWs as well as checks. One of these synthetics, syn14128, recorded a minimum reduction in thousand kernel weight (21%), chlorophyll content (2.56%), grain width (1.07%) despite minimum grain-filling duration (36.15 d) and has been selected as a potential candidate for introducing the terminal heat stress tolerance in wheat breeding programmes. Breeding efforts using these candidate donors will help develop lines with a higher potential to express the desired heat stress-tolerant phenotype under field conditions.


Sign in / Sign up

Export Citation Format

Share Document