scholarly journals Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production

2017 ◽  
Vol 4 (1) ◽  
pp. 74-79 ◽  
Author(s):  
Tarko Fentaw Emiru ◽  
Delele Worku Ayele
2013 ◽  
Vol 233 ◽  
pp. 297-304 ◽  
Author(s):  
Shichoon Lee ◽  
Sung Hun Eom ◽  
Jin Suk Chung ◽  
Seung Hyun Hur

2018 ◽  
Vol 34 (6) ◽  
pp. 2832-2837 ◽  
Author(s):  
Mohd Zaid Ansari ◽  
Mohammad Nadeem Lone ◽  
Shabana Sajid ◽  
Weqar Ahmad Siddiqui

The present work shows a facile route for the preparation of graphene layers and for the first time Zante currants extract used for the effective deoxygenation of graphene oxide has been reported. Zante currants (ZC) extract reduce effectively GO into few layered structures of graphene (FLG). The morphology of few layers graphene and graphene oxide (GO) were investigated by SEM and TEM. Reduction effect on graphene oxide confirm by other technique like Raman, FTIR, XRD and UV spectrophotometry. This procedure keep away the use of hazardous chemicals, thus providing a new hope for large scale production of chemically reduced graphene.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1013-1016 ◽  
Author(s):  
Chang Yi Kong ◽  
Yuuki Shiratori ◽  
Takeshi Sako ◽  
Futoshi Iwata

A green method to synthesize the reduced graphene oxide using supercritical fluid has been developed, which is an environmentally friendly and efficient route. The reduced graphene oxide has been examined by X-ray diffraction, Raman spectroscopy. We have also studied the effects of reduction temperatures and supercritical fluids on the electrical properties of reduced graphene oxide. It was found that ethanol has higher reducing capability than CO2at all temperatures (200 - 400°C) examined in this study for graphene oxide reduction. As a result, reduced graphene oxide (6300 S/m) from supercritical ethanol treatment has 5 times as high conductivity as that from supercritical CO2treatment at the reduction temperature of 400°C. This green process is applicable for large scale production of reduced graphene oxides for various practical applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (51) ◽  
pp. 45931-45937 ◽  
Author(s):  
Shijun Li ◽  
Xin Chen ◽  
Shaozheng Hu ◽  
Qiang Li ◽  
Jin Bai ◽  
...  

A convenient infrared ray assisted microwave method for synthesizing graphitic carbon nitride (g-C3N4) with outstanding nitrogen photofixation ability under visible light is reported.


2014 ◽  
Vol 243 ◽  
pp. 340-346 ◽  
Author(s):  
Ming Zhang ◽  
Bin Gao ◽  
Diana C. Vanegas ◽  
Eric S. McLamore ◽  
June Fang ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 376 ◽  
Author(s):  
Yi-Fang Hung ◽  
Chia Cheng ◽  
Chun-Kai Huang ◽  
Chii-Rong Yang

The electrochemical reduction of graphene oxide (GO) is an environmentally friendly and energy-saving method for improving the characteristics of GO. However, GO films must be coated on the cathode electrode in advance when usingthis technique. Thus, the formed electrochemically reduced GO (ERGO) films can be used only as sensing or conductive materials in devices because mass production of the flakes is not possible. Therefore, this study proposes a facile electrochemical reduction technique. In this technique, GO flakes can be directly used as reduced materials, and no GO films are required in advance. A 0.1 M phosphate buffered saline solution was used as the electrolyte, which is a highly safe chemical agent. Experimental results revealed that the as-prepared GO flakes were electrochemically reduced to form ERGO flakes by using a −10 V bias for 8 h. The ratio of the D-band and G-band feature peaks was increased from 0.86 to 1.12, as revealed by Raman spectroscopy, the π-π stacking interaction operating between the ERGO and GO has been revealed by UV-Vis absorption spectroscopy, and the C–O ratio was increased from 2.02 to 2.56, as indicated by X-ray photoelectron spectroscopy. The electrical conductivity of the ERGO film (3.83 × 10−1 S·cm−1) was considerably better than that of the GO film (7.92 × 10−4 S·cm−1). These results demonstrate that the proposed electrochemical reduction technique can provide high-quality ERGO flakes and that it has potential for large-scale production.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jiang Zhu ◽  
Haitao Ni ◽  
Chunyan Hu ◽  
Yuxiang Zhu ◽  
Jinxia Cai ◽  
...  

With the promising potential application of Ag/graphene-based nanomaterials in medicine and engineering materials, the large-scale production has attracted great interest of researchers on the basis of green synthesis. In this study, water-soluble silver/graphene oxide (Ag/GO) nanomaterials were synthesized under ultrasound-assisted conditions. The structural characteristics of Ag/GO were confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and energy dispersion spectroscopy, respectively. The results showed the silver particles (AgNPs) obtained by reduction were attached to the surface of GO, and there was a strong interaction between AgNPs and GO. The antibacterial activity was primarily evaluated by the plate method and hole punching method. Antibacterial tests indicated that Ag/GO could inhibit the growth of Gram-negative and Gram-positive bacteria, special for the Staphylococcus aureus .


2017 ◽  
Vol 899 ◽  
pp. 347-352 ◽  
Author(s):  
Julio Cesar Serafim Casini ◽  
Antonio Paulo Rodrigues Fernandez ◽  
Rene Ramos de Oliveira ◽  
Solange Kazumi Sakata ◽  
Rubens Nunes de Faria Jr.

Graphene (G) has been attracted great interest for its excellent electrical properties. However, the large-scale production of graphene is presently unfeasible. Graphene oxide (GO) can be (partly) reduced to graphene-like sheets by removing the oxygen-containing groups with the recovery of a conjugated structure. It can be produced using inexpensive graphite as raw material by cost-effective chemical methods. Although hydrogen (mixed with argon) at high temperature (1100°C) has been employed to reduce GO powder, the hydrogenation disproportionation desorption and recombination (HDDR) process in particular was unreported for this purpose. In the present work, attempts of reducing GO powder using the HDDR process have been carried out and investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The experimental results of processing graphene oxide powder using unmixed hydrogen at moderate temperatures (about 850°C) and relatively low pressures (<2 bars) have been reported.


Sign in / Sign up

Export Citation Format

Share Document