scholarly journals Genetic diagnosis of autoinflammatory disease patients using clinical exome sequencing

2020 ◽  
Vol 63 (5) ◽  
pp. 103920 ◽  
Author(s):  
Laura Batlle-Masó ◽  
Anna Mensa-Vilaró ◽  
Manuel Solís-Moruno ◽  
Tomàs Marquès-Bonet ◽  
Juan I. Arostegui ◽  
...  
2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Tiziana Vaisitti ◽  
Monica Sorbini ◽  
Martina Callegari ◽  
Silvia Kalantari ◽  
Valeria Bracciamà ◽  
...  

Abstract Background and Aims Autosomal dominant PKD determines formation of multiple cysts predominantly in the kidneys and usually becomes symptomatic during adulthood and can lead to renal failure. In contrast, in autosomal recessive PKD cysts occur in both the kidneys and the liver and usually presents an earlier onset. Obtaining genetic diagnosis is important to confirm clinical diagnosis and is required before treating with vasopressin 2 receptor blockers, which are the only drugs known to slow down the disease. Furthermore, in the case of kidney transplant from a living family member it is essential to exclude the presence of the mutation in the donor. We used clinical exome sequencing to provide genetic diagnosis to a cohort of patients with a clinical suspicion of PKD. Method 175 patients were referred to the Immunogenetics and Transplant Biology Service of the Turin University Hospital through a network of nephrology centers operating in the Piedmont region. Some patients were referred following genetic counseling. All patients signed an informed consent and the referring physicians provided relevant clinical data. DNA from eligible patients was extracted, checked for integrity, quantified and used for library preparation. A clinical exome sequencing (CES) kit by Illumina was used, allowing the analysis of 6,700 clinically relevant genes. Results Out of the 175 recruited patients eligible for CES, 38 (21.7%) had a clinical suspicion or diagnosis of PKD, with 50% of them presenting family history. The majority of the cohort was represented by male subjects (60.5%) and included both children (34.2%) and adults. The analytical approach was based on initial analysis of genes responsible for PKD (PKD1, PKD2 and PKHD1). If no mutation could be identified, analysis was then extended to a panel of 99 genes responsible for ciliopathies. This approach led to the identification of causative variants in 33/38 (86.8%) of the PKD cohort, while no variant could be identified in 5/38 patients. In 5/33 (15.2%) patients, mutations were inconclusive as found in heterozygosity in genes known to have an autosomal recessive mode of inheritance, while 27/33 (81.8%) were in line with the initial clinical suspicion/diagnosis. Of these, the majority was represented by missense mutations (12), followed by frameshift and nonsense mutations (6 each) and 3 splicing variants. As expected, the majority of mutations were found in PKD1 17/27 (63%), PKD2 3/27 (11.1%) and PKHD1 2/27 (7.4%). In these two latter patients, variants were found as compound heterozygosity. We also found mutations in other genes known to cause cysts, including TSC2 and CPT2. Of note, in 7 patients carrying PKD1 mutations, we found a second variant in PKD1 or PKHD1. Interestingly, when looking at patients characterized by kidney failure but lacking a clinical suspicion at recruitment or diagnosed with other phenotypes (66/175), we found variants in PKD1 and in PKD2 in 11 patients (9 and 2, respectively). Of all identified variants in PKD1, PKD2 and PKHD1 genes, 17.6% were annotated as pathogenic (C5), 41.2% were likely pathogenic (C4) and 41.2% were variants of unknown significance (C3). 19 variants in these genes were not previously reported. All the variants found in genes responsible for PKD were validated and confirmed by Sanger sequencing. Family segregation studies are ongoing. Finally, it is worth mentioning that in a portion of cases (5/38) with clinical and phenotypic features of PKD, supported also by a positive family history, we could not detect mutations in causative genes. These results may be explained by the presence of intronic variants, in line with data reported in literature. Conclusion These results demonstrate that CES may be applied to PKD patients to identify causative variants during their routine diagnostic flow. Furthermore, CES may be a useful tool to detect mutations in PKD-related genes in patients with undiagnosed diseases, considering its rapidly decreasing costs.


Author(s):  
Tiziana Vaisitti ◽  
Monica Sorbini ◽  
Martina Callegari ◽  
Silvia Kalantari ◽  
Valeria Bracciamà ◽  
...  

Abstract Background A considerable minority of patients on waiting lists for kidney transplantation either have no diagnosis (and fall into the subset of undiagnosed cases) because kidney biopsy was not performed or histological findings were non-specific, or do not fall into any well-defined clinical category. Some of these patients might be affected by a previously unrecognised monogenic disease. Methods Through a multidisciplinary cooperative effort, we built an analytical pipeline to identify patients with chronic kidney disease (CKD) with a clinical suspicion of a monogenic condition or without a well-defined diagnosis. Following the stringent phenotypical and clinical characterization required by the flowchart, candidates meeting these criteria were further investigated by clinical exome sequencing followed by in silico analysis of 225 kidney-disease-related genes. Results By using an ad hoc web-based platform, we enrolled 160 patients from 13 different Nephrology and Genetics Units located across the Piedmont region over 15 months. A preliminary “remote” evaluation based on well-defined inclusion criteria allowed us to define eligibility for NGS analysis. Among the 138 recruited patients, 52 (37.7%) were children and 86 (62.3%) were adults. Up to 48% of them had a positive family history for kidney disease. Overall, applying this workflow led to the identification of genetic variants potentially explaining the phenotype in 78 (56.5%) cases. Conclusions These results underline the importance of clinical exome sequencing as a versatile and highly useful, non-invasive tool for genetic diagnosis of kidney diseases. Identifying patients who can benefit from targeted therapies, and improving the management of organ transplantation are further expected applications.


2021 ◽  
Vol 7 (3) ◽  
pp. e597
Author(s):  
Patrick Forny ◽  
Emma Footitt ◽  
James E. Davison ◽  
Amanda Lam ◽  
Cathy E. Woodward ◽  
...  

ObjectiveWe hypothesized that novel investigative pathways are needed to decrease diagnostic odysseys in pediatric mitochondrial disease and sought to determine the utility of clinical exome sequencing in a large cohort with suspected mitochondrial disease and to explore whether any of the traditional indicators of mitochondrial disease predict a confirmed genetic diagnosis.MethodsWe investigated a cohort of 85 pediatric patients using clinical exome sequencing and compared the results with the outcome of traditional diagnostic tests, including biochemical testing of routine parameters (lactate, alanine, and proline), neuroimaging, and muscle biopsy with histology and respiratory chain enzyme activity studies.ResultsWe established a genetic diagnosis in 36.5% of the cohort and report 20 novel disease-causing variants (1 mitochondrial DNA). Counterintuitively, routine biochemical markers were more predictive of mitochondrial disease than more invasive and elaborate muscle studies.ConclusionsWe propose using biochemical markers to support the clinical suspicion of mitochondrial disease and then apply first-line clinical exome sequencing to identify a definite diagnosis. Muscle biopsy studies should only be used in clinically urgent situations or to confirm an inconclusive genetic result.Classification of EvidenceThis is a Class II diagnostic accuracy study showing that the combination of CSF and plasma biochemical tests plus neuroimaging could predict the presence or absence of exome sequencing confirmed mitochondrial disorders.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Francisco Martinez-Granero ◽  
Fiona Blanco-Kelly ◽  
Carolina Sanchez-Jimeno ◽  
Almudena Avila-Fernandez ◽  
Ana Arteche ◽  
...  

AbstractMost consensus recommendations for the genetic diagnosis of neurodevelopmental disorders (NDDs) do not include the use of next generation sequencing (NGS) and are still based on chromosomal microarrays, such as comparative genomic hybridization array (aCGH). This study compares the diagnostic yield obtained by aCGH and clinical exome sequencing in NDD globally and its spectrum of disorders. To that end, 1412 patients clinically diagnosed with NDDs and studied with aCGH were classified into phenotype categories: global developmental delay/intellectual disability (GDD/ID); autism spectrum disorder (ASD); and other NDDs. These categories were further subclassified based on the most frequent accompanying signs and symptoms into isolated forms, forms with epilepsy; forms with micro/macrocephaly and syndromic forms. Two hundred and forty-five patients of the 1412 were subjected to clinical exome sequencing. Diagnostic yield of aCGH and clinical exome sequencing, expressed as the number of solved cases, was compared for each phenotype category and subcategory. Clinical exome sequencing was superior than aCGH for all cases except for isolated ASD, with no additional cases solved by NGS. Globally, clinical exome sequencing solved 20% of cases (versus 5.7% by aCGH) and the diagnostic yield was highest for all forms of GDD/ID and lowest for Other NDDs (7.1% versus 1.4% by aCGH) and ASD (6.1% versus 3% by aCGH). In the majority of cases, diagnostic yield was higher in the phenotype subcategories than in the mother category. These results suggest that NGS could be used as a first-tier test in the diagnostic algorithm of all NDDs followed by aCGH when necessary.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Tiziana Vaisitti ◽  
Monica Sorbini ◽  
Martina Callegari ◽  
Silvia Kalantari ◽  
Valeria Bracciamà ◽  
...  

Abstract Background and Aims next-generation sequencing (NGS) technologies are becoming a powerful diagnostic tool in precision medicine. Specifically, exome sequencing can help in the diagnosis of selected diseases, in their medical management and therapeutic choices. Inherited kidney diseases (IKD) are among the major causes for kidney failure, both in children and adults, resulting in increased mortality, high health care costs and need for organ transplantation. In addition, it is worth mentioning that a significant proportion of patients in the kidney transplant lacks a clear diagnosis. This subset of diseases may thus benefit from the application of NGS technology, as the simultaneous investigation of hundreds of genes can lead to the identification of causative variants in a vast population of patients. The aim of this study is to validate the use of a clinical exome sequencing approach in the diagnostic flow for kidney diseases leading to organ failure to i) confirm the clinical diagnosis, ii) find the genetic cause of previously unrecognized diseases and iii) improve the outcome of organ transplantation by excluding live-donors carrying the same mutational burden. Method 160 patients were recruited, directly or following a genetic counseling, exploiting a network of 21 nephrology centers spread across the Piedmont region, coordinated by the “Centro Regionale Trapianti (CRT)” of Torino. Patients were then evaluated for NGS eligibility. DNA extracted from blood samples was checked for integrity, quantified and used for library preparation. A clinical exome sequencing (CES) kit by Illumina was used, allowing for targeted capture, enrichment and sequencing of 6700 clinically relevant genes. Reads were aligned to hg37 reference genome using the Isaac enrichment tool and variants filtered using an ad-hoc set up pipeline of analysis. Results clinical exome sequencing was performed on a diagnostic cohort of 138 patients, both children (37.7%) and adults (62.3%), with a prevalence of male subjects (56.5%). The majority of the cohort (51.5%) presented a positive family history for kidney disease, while 22 patients were excluded from the study as organ failure was most likely the result of secondary events. The cohort was highly heterogeneous with 21% of patients presenting with ciliopathies, 18.1% with glomerular disease, 7.2% with tubular disease while the remaining cohort presented other diseases or was undiagnosed (44.3%). An ad hoc analytical pipeline was designed, based on selected genotype-phenotype correlation database, filter-in metrics, inheritance model and annotation of variants based on public databases and in-silico prediction tools. By adopting well defined criteria of recruitment and analysis, causative genes were identified in 61.6% of cases and in the 57.3% of cases results were in line with the original diagnostic hypothesis. Moreover, 50.8% of cases with organ failure for unknown reasons were solved with the identification of causative genes. Out of the 133 total variants found in the cohort, 63 were classified as pathogenic or likely pathogenic. The remaining 70 identified variants were annotated as variant of unknown significance and will be further investigated. Conclusion Taken together, these results show that CES is a powerful non-invasive tool for the genetic diagnosis of IKD. Identification of disease causative variants may represent a critical step for the diagnosis, clinical management of the patients, and potentially for optimal live-donor selection.


2021 ◽  
Vol 12 (1) ◽  
pp. 109-114
Author(s):  
Adrijan Sarajlija ◽  
Slađana Todorović ◽  
Biljana Alimpić ◽  
Maja Čehić

Introduction. Patients affected with Allan-Herndon-Dudley syndrome (AHDS) have a deficiency of monocarboxylate transporter 8 (MCT8), a protein primarily responsible for the transport of triiodothyronine (T3) into the brain. This X-linked disorder affects almost exclusively males with clinical presentation encompassing developmental delay, axial hypotonia, dystonia, poor head control, quadriplegia and absence of speech. Case reports. Patient 1 is a male child referred to a hospital investigation at 11 months due to severe developmental delay and elevated blood ammonia level (163 mcmol/L). Hypotonia and dystonic movements were noted at admission, with facial dysmorphic features. Laboratory findings revealed increased blood lactate (17.2 mmol/L), alanine (533 mcmol/L) and ammonia (391 mcmol/L) concentrations. Serum creatine-kinase levels showed substantial increase over the course of hospitalization up to 6,855 IU/L. Clinical exome sequencing detected a novel hemizygous frameshift insertion c.1456insC in gene SLC16A2, predicted to cause loss of normal protein function either through protein truncation or nonsense-mediated mRNA decay. Segregation genetic testing of the family members revealed that mother, maternal uncle and maternal grandmother carry the same mutation in SLC16A2. The boy`s mother experienced learning difficulties through childhood while maternal uncle is severely affected by AHDS. Patient 2 is a boy referred to clinical geneticist due to severe psychomotor delay of unknown etiology. Moderate serum lactate elevation was the only laboratory abnormality during initial investigations. Diagnosis of AHDS was established by clinical exome sequencing, and subsequent hormonal evaluation revealed increased triiodothyronine (T3) level which corresponds well to genetic diagnosis. Conclusion. Presence of lactic acidosis and/or hyperammonemia in children with severe developmental delay is not specific for inborn disorders of energy production, such as mitochondrial disease. Clinicians should consider thyroid hormones profiling in cases of unexplained severe developmental delay in male children, especially if associated with axial hypotonia and dystonic movements.


2020 ◽  
Author(s):  
Jayant Mahadevan ◽  
Reeteka Sud ◽  
Ravi Kumar Nadella ◽  
Vani P ◽  
Anand G Subramaniam ◽  
...  

BACKGROUND:Psychiatric syndromes have polymorphic symptomatology, and are known to be heritable. Psychiatric symptoms (and even syndromes) often occur as part of the clinical presentation in rare Mendelian syndromes. Clinical exome sequencing reports may help with refining diagnosis and influence treatment decisions, in addition to providing a window into the biology of brain and behaviour. We describe a clinical audit of 12 individuals who sought treatment at our hospital, and for whom targeted sequencing was ordered. Three cases are discussed in detail to demonstrate correlations between genotype and phenotype in the clinic.METHODS:Targeted Next-Generation Sequencing (NGS) was done using Clinical Exome Panel (TruSight One, Illumina) covering coding exons and flanking intronic sequences of 4811 genes associated with known inherited diseases. Variants detected were classified according to the American College for Medical Genetics (ACMG) recommendation for standards of interpretation and reporting of sequence variations.RESULTS:Ten out of twelve cases had at least one pathogenic variant. In one of these cases, we detected a known pathogenic variant in MAPT gene in a suspected FTD case, which helped us to confirm the diagnosis. In another case, we detected a novel variant predicted to be deleterious in NF1 gene. Identification of this mutation suggested a change in treatment for the patient, that was of benefit. The same patient also harboured a novel variant in the TRIO gene. This gene may be involved in biological processes that underlie the patient’s psychiatric illness.CONCLUSIONS:The cases discussed here exemplify different scenarios under which targeted exome sequencing can find meaningful application in the clinic: confirming diagnosis (MAPT variant), or modifying treatment (NF1). We suggest that clinical exome sequencing can be a helpful addition to a clinician’s toolkit when there are expediting factors to consider— such as early-onset, strong family history of mental illness, complex/atypical presentations and minor physical anomalies or neurocutaneous markers.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Anna Ka-Yee Kwong ◽  
Mandy Ho-Yin Tsang ◽  
Jasmine Lee-Fong Fung ◽  
Christopher Chun-Yu Mak ◽  
Kate Lok-San Chan ◽  
...  

Abstract Background Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. Results We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. Conclusions A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.


Sign in / Sign up

Export Citation Format

Share Document