scholarly journals Clinical exome sequencing is a powerful tool in the diagnostic flow of monogenic kidney diseases: an Italian experience

Author(s):  
Tiziana Vaisitti ◽  
Monica Sorbini ◽  
Martina Callegari ◽  
Silvia Kalantari ◽  
Valeria Bracciamà ◽  
...  

Abstract Background A considerable minority of patients on waiting lists for kidney transplantation either have no diagnosis (and fall into the subset of undiagnosed cases) because kidney biopsy was not performed or histological findings were non-specific, or do not fall into any well-defined clinical category. Some of these patients might be affected by a previously unrecognised monogenic disease. Methods Through a multidisciplinary cooperative effort, we built an analytical pipeline to identify patients with chronic kidney disease (CKD) with a clinical suspicion of a monogenic condition or without a well-defined diagnosis. Following the stringent phenotypical and clinical characterization required by the flowchart, candidates meeting these criteria were further investigated by clinical exome sequencing followed by in silico analysis of 225 kidney-disease-related genes. Results By using an ad hoc web-based platform, we enrolled 160 patients from 13 different Nephrology and Genetics Units located across the Piedmont region over 15 months. A preliminary “remote” evaluation based on well-defined inclusion criteria allowed us to define eligibility for NGS analysis. Among the 138 recruited patients, 52 (37.7%) were children and 86 (62.3%) were adults. Up to 48% of them had a positive family history for kidney disease. Overall, applying this workflow led to the identification of genetic variants potentially explaining the phenotype in 78 (56.5%) cases. Conclusions These results underline the importance of clinical exome sequencing as a versatile and highly useful, non-invasive tool for genetic diagnosis of kidney diseases. Identifying patients who can benefit from targeted therapies, and improving the management of organ transplantation are further expected applications.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Tiziana Vaisitti ◽  
Monica Sorbini ◽  
Martina Callegari ◽  
Silvia Kalantari ◽  
Valeria Bracciamà ◽  
...  

Abstract Background and Aims next-generation sequencing (NGS) technologies are becoming a powerful diagnostic tool in precision medicine. Specifically, exome sequencing can help in the diagnosis of selected diseases, in their medical management and therapeutic choices. Inherited kidney diseases (IKD) are among the major causes for kidney failure, both in children and adults, resulting in increased mortality, high health care costs and need for organ transplantation. In addition, it is worth mentioning that a significant proportion of patients in the kidney transplant lacks a clear diagnosis. This subset of diseases may thus benefit from the application of NGS technology, as the simultaneous investigation of hundreds of genes can lead to the identification of causative variants in a vast population of patients. The aim of this study is to validate the use of a clinical exome sequencing approach in the diagnostic flow for kidney diseases leading to organ failure to i) confirm the clinical diagnosis, ii) find the genetic cause of previously unrecognized diseases and iii) improve the outcome of organ transplantation by excluding live-donors carrying the same mutational burden. Method 160 patients were recruited, directly or following a genetic counseling, exploiting a network of 21 nephrology centers spread across the Piedmont region, coordinated by the “Centro Regionale Trapianti (CRT)” of Torino. Patients were then evaluated for NGS eligibility. DNA extracted from blood samples was checked for integrity, quantified and used for library preparation. A clinical exome sequencing (CES) kit by Illumina was used, allowing for targeted capture, enrichment and sequencing of 6700 clinically relevant genes. Reads were aligned to hg37 reference genome using the Isaac enrichment tool and variants filtered using an ad-hoc set up pipeline of analysis. Results clinical exome sequencing was performed on a diagnostic cohort of 138 patients, both children (37.7%) and adults (62.3%), with a prevalence of male subjects (56.5%). The majority of the cohort (51.5%) presented a positive family history for kidney disease, while 22 patients were excluded from the study as organ failure was most likely the result of secondary events. The cohort was highly heterogeneous with 21% of patients presenting with ciliopathies, 18.1% with glomerular disease, 7.2% with tubular disease while the remaining cohort presented other diseases or was undiagnosed (44.3%). An ad hoc analytical pipeline was designed, based on selected genotype-phenotype correlation database, filter-in metrics, inheritance model and annotation of variants based on public databases and in-silico prediction tools. By adopting well defined criteria of recruitment and analysis, causative genes were identified in 61.6% of cases and in the 57.3% of cases results were in line with the original diagnostic hypothesis. Moreover, 50.8% of cases with organ failure for unknown reasons were solved with the identification of causative genes. Out of the 133 total variants found in the cohort, 63 were classified as pathogenic or likely pathogenic. The remaining 70 identified variants were annotated as variant of unknown significance and will be further investigated. Conclusion Taken together, these results show that CES is a powerful non-invasive tool for the genetic diagnosis of IKD. Identification of disease causative variants may represent a critical step for the diagnosis, clinical management of the patients, and potentially for optimal live-donor selection.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Tiziana Vaisitti ◽  
Monica Sorbini ◽  
Martina Callegari ◽  
Silvia Kalantari ◽  
Valeria Bracciamà ◽  
...  

Abstract Background and Aims Autosomal dominant PKD determines formation of multiple cysts predominantly in the kidneys and usually becomes symptomatic during adulthood and can lead to renal failure. In contrast, in autosomal recessive PKD cysts occur in both the kidneys and the liver and usually presents an earlier onset. Obtaining genetic diagnosis is important to confirm clinical diagnosis and is required before treating with vasopressin 2 receptor blockers, which are the only drugs known to slow down the disease. Furthermore, in the case of kidney transplant from a living family member it is essential to exclude the presence of the mutation in the donor. We used clinical exome sequencing to provide genetic diagnosis to a cohort of patients with a clinical suspicion of PKD. Method 175 patients were referred to the Immunogenetics and Transplant Biology Service of the Turin University Hospital through a network of nephrology centers operating in the Piedmont region. Some patients were referred following genetic counseling. All patients signed an informed consent and the referring physicians provided relevant clinical data. DNA from eligible patients was extracted, checked for integrity, quantified and used for library preparation. A clinical exome sequencing (CES) kit by Illumina was used, allowing the analysis of 6,700 clinically relevant genes. Results Out of the 175 recruited patients eligible for CES, 38 (21.7%) had a clinical suspicion or diagnosis of PKD, with 50% of them presenting family history. The majority of the cohort was represented by male subjects (60.5%) and included both children (34.2%) and adults. The analytical approach was based on initial analysis of genes responsible for PKD (PKD1, PKD2 and PKHD1). If no mutation could be identified, analysis was then extended to a panel of 99 genes responsible for ciliopathies. This approach led to the identification of causative variants in 33/38 (86.8%) of the PKD cohort, while no variant could be identified in 5/38 patients. In 5/33 (15.2%) patients, mutations were inconclusive as found in heterozygosity in genes known to have an autosomal recessive mode of inheritance, while 27/33 (81.8%) were in line with the initial clinical suspicion/diagnosis. Of these, the majority was represented by missense mutations (12), followed by frameshift and nonsense mutations (6 each) and 3 splicing variants. As expected, the majority of mutations were found in PKD1 17/27 (63%), PKD2 3/27 (11.1%) and PKHD1 2/27 (7.4%). In these two latter patients, variants were found as compound heterozygosity. We also found mutations in other genes known to cause cysts, including TSC2 and CPT2. Of note, in 7 patients carrying PKD1 mutations, we found a second variant in PKD1 or PKHD1. Interestingly, when looking at patients characterized by kidney failure but lacking a clinical suspicion at recruitment or diagnosed with other phenotypes (66/175), we found variants in PKD1 and in PKD2 in 11 patients (9 and 2, respectively). Of all identified variants in PKD1, PKD2 and PKHD1 genes, 17.6% were annotated as pathogenic (C5), 41.2% were likely pathogenic (C4) and 41.2% were variants of unknown significance (C3). 19 variants in these genes were not previously reported. All the variants found in genes responsible for PKD were validated and confirmed by Sanger sequencing. Family segregation studies are ongoing. Finally, it is worth mentioning that in a portion of cases (5/38) with clinical and phenotypic features of PKD, supported also by a positive family history, we could not detect mutations in causative genes. These results may be explained by the presence of intronic variants, in line with data reported in literature. Conclusion These results demonstrate that CES may be applied to PKD patients to identify causative variants during their routine diagnostic flow. Furthermore, CES may be a useful tool to detect mutations in PKD-related genes in patients with undiagnosed diseases, considering its rapidly decreasing costs.


2021 ◽  
Vol 22 ◽  
Author(s):  
Masoud Heidari ◽  
Hamid Gharshasbi ◽  
Alireza Isazadeh ◽  
Morteza Soleyman-Nejad ◽  
Mohammad Hossein Taskhiri ◽  
...  

Background:: Polycystic kidney disease (PKD) is an autosomal recessive disorder resulting from mutations in the PKHD1 gene on chromosome 6 (6p12), a large gene spanning 470 kb of genomic DNA. Objective: The aim of the present study was to report newly identified mutations in the PKHD1 gene in two Iranian families with PKD. Materials and Methods: Genetic alterations of a 3-month-old boy and a 27-year-old girl with PKD were evaluated using whole-exome sequencing. The PCR direct sequencing was performed to analyse the co-segregation of the variants with the disease in the family. Finally, the molecular function of the identified novel mutations was evaluated by in silico study. Results: In the 3 month-old boy, a novel homozygous frameshift mutation was detected in the PKHD1 gene, which can cause PKD. Moreover, we identified three novel heterozygous missense mutations in ATIC, VPS13B, and TP53RK genes. In the 27-year-old woman, with two recurrent abortions history and two infant mortalities at early weeks due to metabolic and/or renal disease, we detected a novel missense mutation on PKHD1 gene and a novel mutation in ETFDH gene. Conclusion: In general, we have identified two novel mutations in the PKHD1 gene. These molecular findings can help accurately correlate genotype and phenotype in families with such disease in order to reduce patient births through preoperative genetic diagnosis or better management of disorders.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Floranne Boulogne ◽  
Laura Claus ◽  
Henry Wiersma ◽  
Roy Oelen ◽  
Floor Schukking ◽  
...  

Abstract Background and Aims Genetic testing in patients with suspected hereditary kidney disease does not always reveal the genetic cause for the patient's disorder. Potentially pathogenic variants can reside in genes that are not known to be involved in kidney disease, which makes it difficult to prioritize and interpret the relevance of these variants. As such, there is a clear need for methods that predict the phenotypic consequences of gene expression in a way that is as unbiased as possible. To help identify candidate genes we have developed KidneyNetwork, in which tissue-specific expression is utilized to predict kidney-specific gene functions. Method We combined gene co-expression in 878 publicly available kidney RNA-sequencing samples with the co-expression of a multi-tissue RNA-sequencing dataset of 31,499 samples to build KidneyNetwork. The expression patterns were used to predict which genes have a kidney-related function, and which (disease) phenotypes might be caused when these genes are mutated. By integrating the information from the HPO database, in which known phenotypic consequences of disease genes are annotated, with the gene co-expression network we obtained prediction scores for each gene per HPO term. As proof of principle, we applied KidneyNetwork to prioritize variants in exome-sequencing data from 13 kidney disease patients without a genetic diagnosis. Results We assessed the prediction performance of KidneyNetwork by comparing it to GeneNetwork, a multi-tissue co-expression network we previously developed. In KidneyNetwork, we observe a significantly improved prediction accuracy of kidney-related HPO-terms, as well as an increase in the total number of significantly predicted kidney-related HPO-terms (figure 1). To examine its clinical utility, we applied KidneyNetwork to 13 patients with a suspected hereditary kidney disease without a genetic diagnosis. Based on the HPO terms “Renal cyst” and “Hepatic cysts”, combined with a list of potentially damaging variants in one of the undiagnosed patients with mild ADPKD/PCLD, we identified ALG6 as a new candidate gene. ALG6 bears a high resemblance to other genes implicated in this phenotype in recent years. Through the 100,000 Genomes Project and collaborators we identified three additional patients with kidney and/or liver cysts carrying a suspected deleterious variant in ALG6. Conclusion We present KidneyNetwork, a kidney specific co-expression network that accurately predicts what genes have kidney-specific functions and may result in kidney disease. Gene-phenotype associations of genes unknown for kidney-related phenotypes can be predicted by KidneyNetwork. We show the added value of KidneyNetwork by applying it to exome sequencing data of kidney disease patients without a molecular diagnosis and consequently we propose ALG6 as a promising candidate gene. KidneyNetwork can be applied to clinically unsolved kidney disease cases, but it can also be used by researchers to gain insight into individual genes to better understand kidney physiology and pathophysiology. Acknowledgments This research was made possible through access to the data and findings generated by the 100,000 Genomes Project; http://www.genomicsengland.co.uk.


2021 ◽  
pp. 1-11
Author(s):  
Montse Pauta ◽  
Berta Campos ◽  
Maria Segura-Puimedon ◽  
Gemma Arca ◽  
Alfons Nadal ◽  
...  

<b><i>Objective:</i></b> The aim of the study was to assess the diagnostic yield of 2 different next-generation sequencing (NGS) approaches: gene panel and “solo” clinical exome sequencing (solo-CES), in fetuses with structural anomalies and normal chromosomal microarray analysis (CMA), in the absence of a known familial mutation. <b><i>Methodology:</i></b> Gene panels encompassing from 2 to 140 genes, were applied mainly in persistent nuchal fold/fetal hydrops and in large hyperechogenic kidneys. Solo-CES, which entails sequencing the fetus alone and only interpreting the Online Mendelian Inheritance in Man genes, was performed in multisystem or recurrent structural anomalies. <b><i>Results:</i></b> During the study period (2015–2020), 153 NGS studies were performed in 148 structurally abnormal fetuses with a normal CMA. The overall diagnostic yield accounted for 35% (53/153) of samples and 36% (53/148) of the fetuses. Diagnostic yield with the gene panels was 31% (15/49), similar to 37% (38/104) in solo-CES. <b><i>Conclusions:</i></b> A monogenic disease was established as the underlying cause in 35% of selected fetal structural anomalies by gene panels and solo-CES.


2021 ◽  
Vol 7 (3) ◽  
pp. e597
Author(s):  
Patrick Forny ◽  
Emma Footitt ◽  
James E. Davison ◽  
Amanda Lam ◽  
Cathy E. Woodward ◽  
...  

ObjectiveWe hypothesized that novel investigative pathways are needed to decrease diagnostic odysseys in pediatric mitochondrial disease and sought to determine the utility of clinical exome sequencing in a large cohort with suspected mitochondrial disease and to explore whether any of the traditional indicators of mitochondrial disease predict a confirmed genetic diagnosis.MethodsWe investigated a cohort of 85 pediatric patients using clinical exome sequencing and compared the results with the outcome of traditional diagnostic tests, including biochemical testing of routine parameters (lactate, alanine, and proline), neuroimaging, and muscle biopsy with histology and respiratory chain enzyme activity studies.ResultsWe established a genetic diagnosis in 36.5% of the cohort and report 20 novel disease-causing variants (1 mitochondrial DNA). Counterintuitively, routine biochemical markers were more predictive of mitochondrial disease than more invasive and elaborate muscle studies.ConclusionsWe propose using biochemical markers to support the clinical suspicion of mitochondrial disease and then apply first-line clinical exome sequencing to identify a definite diagnosis. Muscle biopsy studies should only be used in clinically urgent situations or to confirm an inconclusive genetic result.Classification of EvidenceThis is a Class II diagnostic accuracy study showing that the combination of CSF and plasma biochemical tests plus neuroimaging could predict the presence or absence of exome sequencing confirmed mitochondrial disorders.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Francisco Martinez-Granero ◽  
Fiona Blanco-Kelly ◽  
Carolina Sanchez-Jimeno ◽  
Almudena Avila-Fernandez ◽  
Ana Arteche ◽  
...  

AbstractMost consensus recommendations for the genetic diagnosis of neurodevelopmental disorders (NDDs) do not include the use of next generation sequencing (NGS) and are still based on chromosomal microarrays, such as comparative genomic hybridization array (aCGH). This study compares the diagnostic yield obtained by aCGH and clinical exome sequencing in NDD globally and its spectrum of disorders. To that end, 1412 patients clinically diagnosed with NDDs and studied with aCGH were classified into phenotype categories: global developmental delay/intellectual disability (GDD/ID); autism spectrum disorder (ASD); and other NDDs. These categories were further subclassified based on the most frequent accompanying signs and symptoms into isolated forms, forms with epilepsy; forms with micro/macrocephaly and syndromic forms. Two hundred and forty-five patients of the 1412 were subjected to clinical exome sequencing. Diagnostic yield of aCGH and clinical exome sequencing, expressed as the number of solved cases, was compared for each phenotype category and subcategory. Clinical exome sequencing was superior than aCGH for all cases except for isolated ASD, with no additional cases solved by NGS. Globally, clinical exome sequencing solved 20% of cases (versus 5.7% by aCGH) and the diagnostic yield was highest for all forms of GDD/ID and lowest for Other NDDs (7.1% versus 1.4% by aCGH) and ASD (6.1% versus 3% by aCGH). In the majority of cases, diagnostic yield was higher in the phenotype subcategories than in the mother category. These results suggest that NGS could be used as a first-tier test in the diagnostic algorithm of all NDDs followed by aCGH when necessary.


Phenomics ◽  
2021 ◽  
Author(s):  
Ye Fang ◽  
Hua Shi ◽  
Tianchao Xiang ◽  
Jiaojiao Liu ◽  
Jialu Liu ◽  
...  

AbstractKidney disease is manifested in a wide variety of phenotypes, many of which have an important hereditary component. To delineate the genotypic and phenotypic spectrum of pediatric nephropathy, a multicenter registration system is being implemented based on the Chinese Children Genetic Kidney Disease Database (CCGKDD). In this study, all the patients with kidney and urological diseases were recruited from 2014 to 2020. Genetic analysis was conducted using exome sequencing for families with multiple affected individuals with nephropathy or clinical suspicion of a genetic kidney disease owing to early-onset or extrarenal features. The genetic diagnosis was confirmed in 883 of 2256 (39.1%) patients from 23 provinces in China. Phenotypic profiles showed that the primary diagnosis included steroid-resistant nephrotic syndrome (SRNS, 23.5%), glomerulonephritis (GN, 32.2%), congenital anomalies of the kidney and urinary tract (CAKUT, 21.2%), cystic renal disease (3.9%), renal calcinosis/stone (3.6%), tubulopathy (9.7%), and chronic kidney disease of unknown etiology (CKDu, 5.8%). The pathogenic variants of 105 monogenetic disorders were identified. Ten distinct genomic disorders were identified as pathogenic copy number variants (CNVs) in 11 patients. The diagnostic yield differed by subgroups, and was highest in those with cystic renal disease (66.3%), followed by tubulopathy (58.4%), GN (57.7%), CKDu (43.5%), SRNS (29.2%), renal calcinosis /stone (29.3%) and CAKUT (8.6%). Reverse phenotyping permitted correct identification in 40 cases with clinical reassessment and unexpected genetic conditions. We present the results of the largest cohort of children with kidney disease in China where diagnostic exome sequencing was performed. Our data demonstrate the utility of family-based exome sequencing, and indicate that the combined analysis of genotype and phenotype based on the national patient registry is pivotal to the genetic diagnosis of kidney disease.


With the advancement in, and increased availability of, genetic testing and a rapidly growing understanding of the genetic basis of many kidney diseases, it is important that nephrologists understand the rationale, limitations, and implications of making a genetic diagnosis in patients with kidney disease. While most inherited kidney diseases are rare, all nephrologists will encounter patients with genetic forms of kidney disease, particularly the cystic kidney diseases. An understanding of the genotype–phenotype relationships across the different inherited kidney diseases provides the nephrologist with an unprecedented understanding of disease pathogenesis. The evolving use of gene-based and molecular therapies utilizing silencing RNA molecules in kidney diseases are likely to become a growing therapeutic option in the future. Nephrologists will need to understand and embrace these new therapies, particularly for this group of kidney diseases.


2021 ◽  
pp. archdischild-2021-322058
Author(s):  
Dan Dai ◽  
Mei Mei ◽  
Liyuan Hu ◽  
Yun Cao ◽  
Xiaochuan Wang ◽  
...  

ObjectiveThis study aimed to investigate the prevalence and clinical characteristics of monogenic disease in paediatric patients with a predominant respiratory phenotype.MethodsExome sequencing was performed in a cohort of 971 children with a predominant respiratory phenotype and suspected genetic aetiology. A total of 140 positive cases were divided into subgroups based on recruitment age and the primary biological system(s) involved.ResultsThere were 140 (14.4%) patients with a positive molecular diagnosis, and their primary clinical manifestations were respiratory distress (12.9%, 18 of 140), respiratory failure (12.9%, 18 of 140) and recurrent/persistent lower respiratory infections (66.4%, 93 of 140). Primary immunodeficiency (49.3%), multisystem malformations/syndromes (17.9%), and genetic lung disease (16.4%) were the three most common genetic causes in the cohort, and they varied among the age subgroups. A total of 72 (51.4%) patients had changes in medical management strategies after genetic diagnosis, and the rate in those with genetic lung disease (82.6%, 19 of 23) was far higher than that in patients with genetic disease with lung involvement (45.3%, 53 of 117) (p=0.001).ConclusionOur findings demonstrate that exome sequencing is a valuable diagnostic tool for monogenic diseases in children with a predominant respiratory phenotype, and the genetic spectrum varies with age. Taken together, genetic diagnoses provide invaluable clinical and prognostic information that may also facilitate the development of precision medicine for paediatric patients.


Sign in / Sign up

Export Citation Format

Share Document