P0051NOVEL AND KNOWN MUTATIONS IDENTIFIED BY CLINICAL EXOME SEQUENCING FOR THE DIAGNOSIS OF POLYCYSTIC KIDNEY DISEASE

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Tiziana Vaisitti ◽  
Monica Sorbini ◽  
Martina Callegari ◽  
Silvia Kalantari ◽  
Valeria Bracciamà ◽  
...  

Abstract Background and Aims Autosomal dominant PKD determines formation of multiple cysts predominantly in the kidneys and usually becomes symptomatic during adulthood and can lead to renal failure. In contrast, in autosomal recessive PKD cysts occur in both the kidneys and the liver and usually presents an earlier onset. Obtaining genetic diagnosis is important to confirm clinical diagnosis and is required before treating with vasopressin 2 receptor blockers, which are the only drugs known to slow down the disease. Furthermore, in the case of kidney transplant from a living family member it is essential to exclude the presence of the mutation in the donor. We used clinical exome sequencing to provide genetic diagnosis to a cohort of patients with a clinical suspicion of PKD. Method 175 patients were referred to the Immunogenetics and Transplant Biology Service of the Turin University Hospital through a network of nephrology centers operating in the Piedmont region. Some patients were referred following genetic counseling. All patients signed an informed consent and the referring physicians provided relevant clinical data. DNA from eligible patients was extracted, checked for integrity, quantified and used for library preparation. A clinical exome sequencing (CES) kit by Illumina was used, allowing the analysis of 6,700 clinically relevant genes. Results Out of the 175 recruited patients eligible for CES, 38 (21.7%) had a clinical suspicion or diagnosis of PKD, with 50% of them presenting family history. The majority of the cohort was represented by male subjects (60.5%) and included both children (34.2%) and adults. The analytical approach was based on initial analysis of genes responsible for PKD (PKD1, PKD2 and PKHD1). If no mutation could be identified, analysis was then extended to a panel of 99 genes responsible for ciliopathies. This approach led to the identification of causative variants in 33/38 (86.8%) of the PKD cohort, while no variant could be identified in 5/38 patients. In 5/33 (15.2%) patients, mutations were inconclusive as found in heterozygosity in genes known to have an autosomal recessive mode of inheritance, while 27/33 (81.8%) were in line with the initial clinical suspicion/diagnosis. Of these, the majority was represented by missense mutations (12), followed by frameshift and nonsense mutations (6 each) and 3 splicing variants. As expected, the majority of mutations were found in PKD1 17/27 (63%), PKD2 3/27 (11.1%) and PKHD1 2/27 (7.4%). In these two latter patients, variants were found as compound heterozygosity. We also found mutations in other genes known to cause cysts, including TSC2 and CPT2. Of note, in 7 patients carrying PKD1 mutations, we found a second variant in PKD1 or PKHD1. Interestingly, when looking at patients characterized by kidney failure but lacking a clinical suspicion at recruitment or diagnosed with other phenotypes (66/175), we found variants in PKD1 and in PKD2 in 11 patients (9 and 2, respectively). Of all identified variants in PKD1, PKD2 and PKHD1 genes, 17.6% were annotated as pathogenic (C5), 41.2% were likely pathogenic (C4) and 41.2% were variants of unknown significance (C3). 19 variants in these genes were not previously reported. All the variants found in genes responsible for PKD were validated and confirmed by Sanger sequencing. Family segregation studies are ongoing. Finally, it is worth mentioning that in a portion of cases (5/38) with clinical and phenotypic features of PKD, supported also by a positive family history, we could not detect mutations in causative genes. These results may be explained by the presence of intronic variants, in line with data reported in literature. Conclusion These results demonstrate that CES may be applied to PKD patients to identify causative variants during their routine diagnostic flow. Furthermore, CES may be a useful tool to detect mutations in PKD-related genes in patients with undiagnosed diseases, considering its rapidly decreasing costs.

Author(s):  
Tiziana Vaisitti ◽  
Monica Sorbini ◽  
Martina Callegari ◽  
Silvia Kalantari ◽  
Valeria Bracciamà ◽  
...  

Abstract Background A considerable minority of patients on waiting lists for kidney transplantation either have no diagnosis (and fall into the subset of undiagnosed cases) because kidney biopsy was not performed or histological findings were non-specific, or do not fall into any well-defined clinical category. Some of these patients might be affected by a previously unrecognised monogenic disease. Methods Through a multidisciplinary cooperative effort, we built an analytical pipeline to identify patients with chronic kidney disease (CKD) with a clinical suspicion of a monogenic condition or without a well-defined diagnosis. Following the stringent phenotypical and clinical characterization required by the flowchart, candidates meeting these criteria were further investigated by clinical exome sequencing followed by in silico analysis of 225 kidney-disease-related genes. Results By using an ad hoc web-based platform, we enrolled 160 patients from 13 different Nephrology and Genetics Units located across the Piedmont region over 15 months. A preliminary “remote” evaluation based on well-defined inclusion criteria allowed us to define eligibility for NGS analysis. Among the 138 recruited patients, 52 (37.7%) were children and 86 (62.3%) were adults. Up to 48% of them had a positive family history for kidney disease. Overall, applying this workflow led to the identification of genetic variants potentially explaining the phenotype in 78 (56.5%) cases. Conclusions These results underline the importance of clinical exome sequencing as a versatile and highly useful, non-invasive tool for genetic diagnosis of kidney diseases. Identifying patients who can benefit from targeted therapies, and improving the management of organ transplantation are further expected applications.


Author(s):  
Scott Kraft ◽  
Sarah Furtado ◽  
Ranjit Ranawaya ◽  
Jillian Parboosingh ◽  
Stacey Bleoo ◽  
...  

ABSTRACT:Background:The spinocerebellar ataxias (SCAs) are a genetically and clinically heterogeneous group of neurodegenerative disorders. Relative frequencies vary within different ethnic groups and geographical locations.Objectives:1) To determine the frequencies of hereditary and sporadic adult onset SCAs in the Movement Disorders population; 2) to assess if the fragile X mental retardation gene 1 (FMR1) premutation is found in this population.Methods:A retrospective chart review of individuals with a diagnosis of adult onset SCA was carried out. Testing for SCA types 1, 2, 3, 6, 7, and 8, Dentatorubral-pallidoluysian atrophy (DRPLA), Friedreich ataxia and the FMR1 expansion was performed.Results:A total of 69 patients in 60 families were identified. Twenty-one (35%) of the families displayed autosomal dominant and two (3.3%) showed autosomal recessive (AR) pattern of inheritance. A positive but undefined family history was noted in nine (15%). The disorder appeared sporadic in 26 patients (43.3%). In the AD families, the most common mutation was SCA3 (23.8%) followed by SCA2 (14.3%) and SCA6 (14.3%). The SCA1 and SCA8 were each identified in 4.8%. FA was found in a pseudodominant pedigree, and one autosomal recessive pedigree. One sporadic patient had a positive test (SCA3).Dentatorubral-pallidoluysian atrophy and FMR1 testing was negative.Conclusion:A positive family history was present in 53.3% of our adult onset SCA patients. A specific genetic diagnosis could be given in 61.9% of dominant pedigrees with SCA3 being the most common mutation, followed by SCA2 and SCA6. The yield in sporadic cases was low. The fragile X premutation was not found to be responsible for SCA.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Tiziana Vaisitti ◽  
Monica Sorbini ◽  
Martina Callegari ◽  
Silvia Kalantari ◽  
Valeria Bracciamà ◽  
...  

Abstract Background and Aims next-generation sequencing (NGS) technologies are becoming a powerful diagnostic tool in precision medicine. Specifically, exome sequencing can help in the diagnosis of selected diseases, in their medical management and therapeutic choices. Inherited kidney diseases (IKD) are among the major causes for kidney failure, both in children and adults, resulting in increased mortality, high health care costs and need for organ transplantation. In addition, it is worth mentioning that a significant proportion of patients in the kidney transplant lacks a clear diagnosis. This subset of diseases may thus benefit from the application of NGS technology, as the simultaneous investigation of hundreds of genes can lead to the identification of causative variants in a vast population of patients. The aim of this study is to validate the use of a clinical exome sequencing approach in the diagnostic flow for kidney diseases leading to organ failure to i) confirm the clinical diagnosis, ii) find the genetic cause of previously unrecognized diseases and iii) improve the outcome of organ transplantation by excluding live-donors carrying the same mutational burden. Method 160 patients were recruited, directly or following a genetic counseling, exploiting a network of 21 nephrology centers spread across the Piedmont region, coordinated by the “Centro Regionale Trapianti (CRT)” of Torino. Patients were then evaluated for NGS eligibility. DNA extracted from blood samples was checked for integrity, quantified and used for library preparation. A clinical exome sequencing (CES) kit by Illumina was used, allowing for targeted capture, enrichment and sequencing of 6700 clinically relevant genes. Reads were aligned to hg37 reference genome using the Isaac enrichment tool and variants filtered using an ad-hoc set up pipeline of analysis. Results clinical exome sequencing was performed on a diagnostic cohort of 138 patients, both children (37.7%) and adults (62.3%), with a prevalence of male subjects (56.5%). The majority of the cohort (51.5%) presented a positive family history for kidney disease, while 22 patients were excluded from the study as organ failure was most likely the result of secondary events. The cohort was highly heterogeneous with 21% of patients presenting with ciliopathies, 18.1% with glomerular disease, 7.2% with tubular disease while the remaining cohort presented other diseases or was undiagnosed (44.3%). An ad hoc analytical pipeline was designed, based on selected genotype-phenotype correlation database, filter-in metrics, inheritance model and annotation of variants based on public databases and in-silico prediction tools. By adopting well defined criteria of recruitment and analysis, causative genes were identified in 61.6% of cases and in the 57.3% of cases results were in line with the original diagnostic hypothesis. Moreover, 50.8% of cases with organ failure for unknown reasons were solved with the identification of causative genes. Out of the 133 total variants found in the cohort, 63 were classified as pathogenic or likely pathogenic. The remaining 70 identified variants were annotated as variant of unknown significance and will be further investigated. Conclusion Taken together, these results show that CES is a powerful non-invasive tool for the genetic diagnosis of IKD. Identification of disease causative variants may represent a critical step for the diagnosis, clinical management of the patients, and potentially for optimal live-donor selection.


PEDIATRICS ◽  
1957 ◽  
Vol 19 (5) ◽  
pp. 908-915
Author(s):  
Eugene F. Diamond

A study of cases of rheumatic fever admitted to La Rabida Sanitarium over a 5-year period was carried out to evaluate heredity and environment as etiologic factors in rheumatic disease. The incidence of rheumatic fever was shown to be higher in families where one or both parents were known to have a positive family history of rheumatic fever. The incidence of rheumatic fever was compared in environmental groups. A totally unfavorable environment was shown to increase the incidence of rheumatic fever. No single unfavorable environmental factor changed the incidence of rheumatic fever. The incidence of rheumatic fever in each environmental group was higher when there was a positive family history for rheumatic fever, indicating an hereditary factor in the family incidence of rheumatic fever. Analysis of the various mating types in the families with a positive rheumatic trait was carried out. Agreement with a simple autosomal recessive gene inheritance was obtained in families where both parents had a definite family history, but no agreement was obtained in cases where only one parent gave a positive family history.


2016 ◽  
Vol 31 (14) ◽  
pp. 1534-1539 ◽  
Author(s):  
Maya Kuperberg ◽  
Dorit Lev ◽  
Lubov Blumkin ◽  
Ayelet Zerem ◽  
Mira Ginsberg ◽  
...  

Whole exome sequencing enables scanning a large number of genes for relatively low costs. The authors investigate its use for previously undiagnosed pediatric neurological patients. This retrospective cohort study performed whole exome sequencing on 57 patients of “Magen” neurogenetic clinics, with unknown diagnoses despite previous workup. The authors report on clinical features, causative genes, and treatment modifications and provide an analysis of whole exome sequencing utility per primary clinical feature. A causative gene was identified in 49.1% of patients, of which 17 had an autosomal dominant mutation, 9 autosomal recessive, and 2 X-linked. The highest rate of positive diagnosis was found for patients with developmental delay, ataxia, or suspected neuromuscular disease. Whole exome sequencing warranted a definitive change of treatment for 5 patients. Genetic databases were updated accordingly. In conclusion, whole exome sequencing is useful in obtaining a high detection rate for previously undiagnosed disorders. Use of this technique could affect diagnosis, treatment, and prognostics for both patients and relatives.


Author(s):  
Hany Mahmoud ◽  
Marwa S. Hashim

Purpose: Glaucoma, the most prevalent cause of irreversible blindness across the world, is progressive optic nerve degeneration and affection (neuropathy) caused by a mixture of both genetic and environmental factors [1]. The extracellular matrix (ECM) structure of the trabecular Meshwork TM has a major role in intraocular pressure IOP control.  Transforming growth factor beta (TGF-β) is a growth factor that plays major roles in cellular functions, including encouraging extracellular matrix synthesis and vascular angiogenesis. TGFβ2 treatment of TM cells alters ECM components [8] and induces ECM bonds. Aim of the Study: To study the relationship between family history and glaucoma according to genotype and genetic polymorphism. Methods: Blood collection and DNA extraction Genotyping: TGFB2 Rs99196 genotyping was done using TaqMan SNP genotyping Assay (ID C___8853564_10). StepOne real time PCR system (Applied Biosystem, Ca, USA) was used for amplifiction. Statistical Analysis: The sample size of the study group was calculated using a program at (www.openepi.com/SampleSize/ SSCC.htm). Results: Important genotype differences frequencies were detected between the positive family history and negative family history groups for the codominant, dominant, recessive and overdominant inheritance models. Conclusion: This study recommends that other polymorphisms of genes associated with glaucoma and the analysis of these gene products and their relationship with disease risk factors should be more studied.


2021 ◽  
Vol 7 (3) ◽  
pp. e597
Author(s):  
Patrick Forny ◽  
Emma Footitt ◽  
James E. Davison ◽  
Amanda Lam ◽  
Cathy E. Woodward ◽  
...  

ObjectiveWe hypothesized that novel investigative pathways are needed to decrease diagnostic odysseys in pediatric mitochondrial disease and sought to determine the utility of clinical exome sequencing in a large cohort with suspected mitochondrial disease and to explore whether any of the traditional indicators of mitochondrial disease predict a confirmed genetic diagnosis.MethodsWe investigated a cohort of 85 pediatric patients using clinical exome sequencing and compared the results with the outcome of traditional diagnostic tests, including biochemical testing of routine parameters (lactate, alanine, and proline), neuroimaging, and muscle biopsy with histology and respiratory chain enzyme activity studies.ResultsWe established a genetic diagnosis in 36.5% of the cohort and report 20 novel disease-causing variants (1 mitochondrial DNA). Counterintuitively, routine biochemical markers were more predictive of mitochondrial disease than more invasive and elaborate muscle studies.ConclusionsWe propose using biochemical markers to support the clinical suspicion of mitochondrial disease and then apply first-line clinical exome sequencing to identify a definite diagnosis. Muscle biopsy studies should only be used in clinically urgent situations or to confirm an inconclusive genetic result.Classification of EvidenceThis is a Class II diagnostic accuracy study showing that the combination of CSF and plasma biochemical tests plus neuroimaging could predict the presence or absence of exome sequencing confirmed mitochondrial disorders.


2016 ◽  
Author(s):  
Ricardo Harripaul ◽  
Nasim Vasli ◽  
Anna Mikhailov ◽  
Muhammad Arshad Rafiq ◽  
Kirti Mittal ◽  
...  

Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations(ABI2, MAPK8, MPDZ, PIDD1, SLAIN1, TBC1D23, TRAPPC6B, UBA7,andUSP44),and missense mutations include the first reports of variants inBDNForTET1associated with ID. The genes identified also showed overlap withde novogene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.


2020 ◽  
Vol 35 (7) ◽  
pp. 433-441
Author(s):  
Bindu Parayil Sankaran ◽  
Madhu Nagappa ◽  
Shwetha Chiplunkar ◽  
Sonam Kothari ◽  
Periyasamy Govindaraj ◽  
...  

The overlapping clinical and neuroimaging phenotypes of leukodystrophies pose a diagnostic challenge to both clinicians and researchers alike. Studies on the application of exome sequencing in the diagnosis of leukodystrophies are emerging. We used targeted gene panel sequencing of 6440 genes to investigate the genetic etiology in a cohort of 50 children with neuroimaging diagnosis of leukodystrophy/genetic leukoencephalopathy of unknown etiology. These 50 patients without a definite biochemical or genetic diagnosis were derived from a cohort of 88 patients seen during a 2.5-year period (2015 January-2017 June). Patients who had diagnosis by biochemical or biopsy confirmation (n = 17) and patients with incomplete data or lack of follow-up (n = 21) were excluded. Exome sequencing identified variants in 30 (60%) patients, which included pathogenic or likely pathogenic variants in 28 and variants of unknown significance in 2. Among the patients with pathogenic or likely pathogenic variants, classic leukodystrophies constituted 13 (26%) and genetic leukoencephalopathies 15 (30%). The clinical and magnetic resonance imaging (MRI) findings and genetic features of the identified disorders are discussed.


2013 ◽  
Vol 168 (4) ◽  
pp. 557-564 ◽  
Author(s):  
Ritika R Kapoor ◽  
Sarah E Flanagan ◽  
Ved Bhushan Arya ◽  
Julian P Shield ◽  
Sian Ellard ◽  
...  

BackgroundCongenital hyperinsulinism (CHI) is a clinically heterogeneous condition. Mutations in eight genes (ABCC8,KCNJ11,GLUD1,GCK,HADH,SLC16A1,HNF4AandHNF1A) are known to cause CHI.AimTo characterise the clinical and molecular aspects of a large cohort of patients with CHI.MethodologyThree hundred patients were recruited and clinical information was collected before genotyping.ABCC8andKCNJ11genes were analysed in all patients. Mutations inGLUD1,HADH,GCKandHNF4Agenes were sought in patients with diazoxide-responsive CHI with hyperammonaemia (GLUD1), raised 3-hydroxybutyrylcarnitine and/or consanguinity (HADH), positive family history (GCK) or when CHI was diagnosed within the first week of life (HNF4A).ResultsMutations were identified in 136/300 patients (45.3%). Mutations inABCC8/KCNJ11were the commonest genetic cause identified (n=109, 36.3%). Among diazoxide-unresponsive patients (n=105), mutations inABCC8/KCNJ11were identified in 92 (87.6%) patients, of whom 63 patients had recessively inherited mutations while four patients had dominantly inherited mutations. A paternal mutation in theABCC8/KCNJ11genes was identified in 23 diazoxide-unresponsive patients, of whom six had diffuse disease. Among the diazoxide-responsive patients (n=183), mutations were identified in 41 patients (22.4%). These include mutations inABCC8/KCNJ11(n=15),HNF4A(n=7),GLUD1(n=16) andHADH(n=3).ConclusionsA genetic diagnosis was made for 45.3% of patients in this large series. Mutations in theABCC8gene were the commonest identifiable cause. The vast majority of patients with diazoxide-responsive CHI (77.6%) had no identifiable mutations, suggesting other genetic and/or environmental mechanisms.


Sign in / Sign up

Export Citation Format

Share Document