Human cornea construct HCC—an alternative for in vitro permeation studies? A comparison with human donor corneas

2005 ◽  
Vol 60 (2) ◽  
pp. 305-308 ◽  
Author(s):  
Stephan Reichl ◽  
Stefanie Döhring ◽  
Jürgen Bednarz ◽  
Christel C. Müller-Goymann
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naresh Polisetti ◽  
Anke Schmid ◽  
Ursula Schlötzer-Schrehardt ◽  
Philip Maier ◽  
Stefan J. Lang ◽  
...  

AbstractAllogenic transplants of the cornea are prone to rejection, especially in repetitive transplantation and in scarred or highly vascularized recipient sites. Patients with these ailments would particularly benefit from the possibility to use non-immunogenic decellularized tissue scaffolds for transplantation, which may be repopulated by host cells in situ or in vitro. So, the aim of this study was to develop a fast and efficient decellularization method for creating a human corneal extracellular matrix scaffold suitable for repopulation with human cells from the corneal limbus. To decellularize human donor corneas, sodium deoxycholate, deoxyribonuclease I, and dextran were assessed to remove cells and nuclei and to control tissue swelling, respectively. We evaluated the decellularization effects on the ultrastructure, optical, mechanical, and biological properties of the human cornea. Scaffold recellularization was studied using primary human limbal epithelial cells, stromal cells, and melanocytes in vitro and a lamellar transplantation approach ex vivo. Our data strongly suggest that this approach allowed the effective removal of cellular and nuclear material in a very short period of time while preserving extracellular matrix proteins, glycosaminoglycans, tissue structure, and optical transmission properties. In vitro recellularization demonstrated good biocompatibility of the decellularized human cornea and ex vivo transplantation revealed complete epithelialization and stromal repopulation from the host tissue. Thus, the generated decellularized human corneal scaffold could be a promising biological material for anterior corneal reconstruction in the treatment of corneal defects.


Author(s):  
Michel Haagdorens ◽  
Elle Edin ◽  
Per Fagerholm ◽  
Marc Groleau ◽  
Zvi Shtein ◽  
...  

Abstract Purpose To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants Methods RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs. Results Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas. Conclusion Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method. Lay Summary A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.


2012 ◽  
Vol 9 (5) ◽  
pp. 494-499 ◽  
Author(s):  
Luisa Di Marzio ◽  
Carlotta Marianecci ◽  
Federica Rinaldi ◽  
Sara Esposito ◽  
Maria Carafa

2021 ◽  
Vol 12 (2) ◽  
pp. 133-144
Author(s):  
Deepal Vora ◽  
Yujin Kim ◽  
Ajay K Banga

Aim: Our study investigated the feasibility of transdermal delivery of heparin, an anticoagulant used against venous thromboembolism, as an alternative to intravenous administration. Materials & methods: Skin was pretreated using ablative laser (Precise Laser Epidermal System [P.L.E.A.S.E.®] technology) for enhanced delivery of heparin. In vitro permeation studies using static Franz diffusion cells provided a comparison between delivery from 0.3% w/v heparin-loaded poloxamer gel and solution across untreated and laser-treated dermatomed porcine ear skin. Results: No passive delivery of heparin was observed. Laser-assisted delivery from solution (26.07 ± 1.82 μg/cm2) was higher (p < 0.05) than delivery from heparin gel (11.28 ± 5.32 μg/cm2). However, gel is likely to sustain the delivery over prolonged periods like a maintenance dose via continuous intravenous infusion. Conclusion: Thus, ablative laser pretreatment successfully delivered heparin, establishing the feasibility of delivering hydrophilic macromolecules using the transdermal route.


2003 ◽  
Vol 86 (4) ◽  
pp. 681-684
Author(s):  
Patrícia S Lopes ◽  
Telma M Kaneko ◽  
Carolina Y Takano ◽  
Aurea C L Lacerda ◽  
Leandro R Latorre ◽  
...  

Abstract A validated method was developed for determination of diclofenac sodium, considered a model hydrophilic drug for in vitro permeation studies, in Eagle's Minimum Essential Medium (MEM) with Earle's balanced salt solution. Liquid chromatography was used to determine diclofenac sodium. This method was developed with a reversed-phase column Supercosil LC 18, DB 25 cm × 4.5 mm; the mobile phase was methanol with 3% (v/v) acetic acid–Milli-Q water (74 + 26), and detection was at 283 nm. The detection and quantitation limits were 2.41 × 10–8 and 3.31 × 10–5 μg/μL, respectively. The accuracy within-day (n = 3) and day-to-day (n = 7) was 98.83%; the mean variation coefficient for inter- (n = 7) and intraday precision (n = 3) was 12.20%, thus, not exceeding 15%. This method can be used as an analytical procedure for the determination of diclofenac sodium in MEM for in vitro permeation studies.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 554 ◽  
Author(s):  
Inken Ramöller ◽  
Emma McAlister ◽  
Abigail Bogan ◽  
Ana Cordeiro ◽  
Ryan Donnelly

The focus on novel systems for transdermal delivery of therapeutic agents has increased considerably over recent years, as this administration route comes with many advantages. Polymeric microarray patches (MAPs) are minimally invasive devices that enable systemic delivery of a wide range of drugs by overcoming the outer skin barrier. Conventionally, MAPs fabricated by micromoulding have a low needle density. In this study, the performance of hydrogel-forming MAPs cast using novel industrially manufactured micromoulds with a high needle density (600 needles/0.75 cm2) was compared to that of MAPs obtained using conventional moulds with a lower density (196 needles/0.89 cm2). Surrounding holders for micromoulds were designed for time-efficient fabrication of MAPs. The influence of needle densities on mechanical strength, insertion efficiency and in vitro permeation of ibuprofen sodium (IBU) was analysed. Insertion of both MAPs into an artificial skin model and neonatal porcine skin was comparable. No significant difference was observed in permeation studies of IBU (p > 0.05), with a delivery of 8.7 ± 1.7 mg for low-density and 9.5 ± 0.1 mg for high-density MAPs within 24 h. This highlights the potential of these novel micromoulds for manufacturing polymeric MAPs with a higher needle density for future applications.


1999 ◽  
Vol 193 (1) ◽  
pp. 49-55 ◽  
Author(s):  
M.Vitória L.B Bentley ◽  
Juliana M Marchetti ◽  
Nágila Ricardo ◽  
Ziad Ali-Abi ◽  
John H Collett

Sign in / Sign up

Export Citation Format

Share Document