scholarly journals Risk factors for acute kidney injury and death in patients infected with the yellow fever virus during the 2018 outbreak in São Paulo, Brazil

Author(s):  
Márcia Fernanda Arantes ◽  
Victor Faria Seabra ◽  
Paulo Ricardo Gessolo Lins ◽  
Camila Eleuterio Rodrigues ◽  
Bernardo Vergara Reichert ◽  
...  
2019 ◽  
Author(s):  
S. C. Hill ◽  
R. P. de Souza ◽  
J. Thézé ◽  
I. Claro ◽  
R. S. Aguiar ◽  
...  

AbstractSão Paulo (SP), a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in SP, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in SP, we generated and analysed virus genomic data and epizootic case data from NHP in SP. We report the occurrence of three spatiotemporally distinct phases of the outbreak in SP prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in SP, mostly sampled from non-human primates between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in São Paulo state at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern São Paulo subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of SP state. Our results shed light on the sylvatic transmission of yellow fever in highly fragmented forested regions in SP state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species.Author’s SummarySince July 2016, the southeast region of Brazil has experienced the largest yellow fever virus (YFV) outbreak in decades. São Paulo is the most densely populated state in southeast Brazil. The outbreak has caused serious public health concern in the state, as YFV does not normally circulate widely there and most of the 21 million inhabitants were correspondingly unvaccinated against YFV when the outbreak began. In Brazil, YFV typically circulates among non-human primates, and human cases represent isolated spillover events from this predominantly sylvatic cycle. Understanding the epidemiological dynamics and spread of YFV in non-human primates is therefore critical for contextualising human cases, and guiding vaccination strategies that can better protect local human populations. Here, we aim to contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in SP. We analyse the geographic and temporal distribution of observed cases of YFV in non-human primates in São Paulo state, and identify three distinct phases of the epizootic. We generate sequence data from 51 YFV-positive cases and perform phylogenetic and phylogeographic analyses aimed at understanding the spatial spread of YFV in São Paulo state. Analyses of these data indicate that YFV spread from the north of São Paulo state into more densely populated southern regions. Although we observe substantial heterogeneity in the rate at which different sampled YFV lineages spread, the typical rate of spread was low with a mean rate of ~1 km per day. This is consistent with a scenario in which the majority of transmission events occurred between non-human primates and sylvatic vectors across forested patches.Article Summary LineGenomic surveillance of yellow fever in São Paulo during the 2016-2018 epizootic


2011 ◽  
Vol 53 (3) ◽  
pp. 133-139 ◽  
Author(s):  
Renato Pereira de Souza ◽  
Selma Petrella ◽  
Terezinha Lisieux Moraes Coimbra ◽  
Adriana Yurika Maeda ◽  
Iray Maria Rocco ◽  
...  

After detecting the death of Howlers monkeys (genus Alouatta) and isolation of yellow fever virus (YFV) in Buri county, São Paulo, Brazil, an entomological research study in the field was started. A YFV strain was isolated from newborn Swiss mice and cultured cells of Aedes albopictus - C6/36, from a pool of six Haemagogus (Conopostegus) leucocelaenus (Hg. leucocelaenus) mosquitoes (Dyar & Shannon) collected at the study site. Virus RNA fragment was amplified by RT-PCR and sequenced. The MCC Tree generated showed that the isolated strain is related to the South American I genotype, in a monophyletic clade containing isolates from recent 2008-2010 epidemics and epizootics in Brazil. Statistical analysis commonly used were calculated to characterize the sample in relation to diversity and dominance and indicated a pattern of dominance of one or a few species. Hg. leucocelaenus was found infected in Rio Grande do Sul State as well. In São Paulo State, this is the first detection of YFV in Hg. leucocelaenus.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Márcio Junio Lima Siconelli ◽  
Daniel Macedo de Melo Jorge ◽  
Luiza Antunes de Castro-Jorge ◽  
Benedito Antonio Lopes da Fonseca

ABSTRACT We report a coding-complete sequence of a yellow fever virus, strain JabSPM02, containing the 3′ untranslated region and all coding regions. The virus was recovered from an infected howler monkey from a rural area in São Paulo State, Brazil. Our findings show that it belongs to the South America 1E genotype.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mariana Sequetin Cunha ◽  
Antonio Charlys da Costa ◽  
Natália Coelho Couto de Azevedo Fernandes ◽  
Juliana Mariotti Guerra ◽  
Fabiana Cristina Pereira dos Santos ◽  
...  

2020 ◽  
Vol 16 (8) ◽  
pp. e1008699 ◽  
Author(s):  
Sarah C. Hill ◽  
Renato de Souza ◽  
Julien Thézé ◽  
Ingra Claro ◽  
Renato S. Aguiar ◽  
...  

2021 ◽  
Author(s):  
Ramon Wilk-da-Silva ◽  
Antônio Ralph Medeiros-Sousa ◽  
Gabriel Zorello Laporta ◽  
Luis Filipe Mucci ◽  
Paula Ribeiro Prist ◽  
...  

Author(s):  
Maura Antonia Lima ◽  
Nicolina Silvana Romano-Lieber ◽  
Ana Maria Ribeiro de Castro Duarte

Yellow fever (YF) is an acute viral infectious disease transmitted by mosquitoes which occurs in two distinct epidemiological cycles: sylvatic and urban. In the sylvatic cycle, the virus is maintained by monkey's infection and transovarian transmission in vectors. Surveillance of non-human primates is required for the detection of viral circulation during epizootics, and for the identification of unaffected or transition areas. An ELISA (enzyme-linked immunosorbent assay) was standardized for estimation of the prevalence of IgG antibodies against yellow fever virus in monkey sera (Alouatta caraya) from the reservoir area of Porto Primavera Hydroelectric Plant, in the state of São Paulo, Brazil. A total of 570 monkey sera samples were tested and none was reactive to antibodies against yellow fever virus. The results corroborate the epidemiology of yellow fever in the area. Even though it is considered a transition area, there were no reports to date of epizootics or yellow fever outbreaks in humans. Also, entomological investigations did not detect the presence of vectors of this arbovirus infection. ELISA proved to be fast, sensitive, an adequate assay, and an instrument for active search in the epidemiological surveillance of yellow fever allowing the implementation of prevention actions, even before the occurrence of epizootics.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261958
Author(s):  
Farid Samaan ◽  
Elisa Carneiro de Paula ◽  
Fabrizzio Batista Guimarães de Lima Souza ◽  
Luiz Fernando Cardoso Mendes ◽  
Paula Regina Gan Rossi ◽  
...  

Introduction Multicenter studies involving patients with acute kidney injury (AKI) associated with the disease caused by the new coronavirus (COVID-19) and treated with renal replacement therapy (RRT) in developing countries are scarce. The objectives of this study were to evaluate the demographic profile, clinical picture, risk factors for mortality, and outcomes of critically ill patients with AKI requiring dialysis (AKI-RRT) and with COVID-19 in the megalopolis of São Paulo, Brazil. Methods This multicenter, retrospective, observational study was conducted in the intensive care units of 13 public and private hospitals in the metropolitan region of the municipality of São Paulo. Patients hospitalized in an intensive care unit, aged ≥ 18 years, and treated with RRT due to COVID-19-associated AKI were included. Results The study group consisted of 375 patients (age 64.1 years, 68.8% male). Most (62.1%) had two or more comorbidities: 68.8%, arterial hypertension; 45.3%, diabetes; 36.3%, anemia; 30.9%, obesity; 18.7%, chronic kidney disease; 15.7%, coronary artery disease; 10.4%, heart failure; and 8.5%, chronic obstructive pulmonary disease. Death occurred in 72.5% of the study population (272 patients). Among the 103 survivors, 22.3% (23 patients) were discharged on RRT. In a multiple regression analysis, the independent factors associated with death were the number of organ dysfunctions at admission and RRT efficiency. Conclusion AKI-RRT associated with COVID-19 occurred in patients with an elevated burden of comorbidities and was associated with high mortality (72.5%). The number of organ dysfunctions during hospitalization and RRT efficiency were independent factors associated with mortality. A meaningful portion of survivors was discharged while dependent on RRT (22.3%).


2011 ◽  
Vol 44 (3) ◽  
pp. 290-296 ◽  
Author(s):  
Eduardo Stramandinoli Moreno ◽  
Iray Maria Rocco ◽  
Eduardo Sterlino Bergo ◽  
Roosecelis Araujo Brasil ◽  
Melissa Mascheratti Siciliano ◽  
...  

INTRODUCTION: Following yellow fever virus (YFV) isolation in monkeys from the São José do Rio Preto region and two fatal human autochthonous cases from the Ribeirão Preto region, State of São Paulo, Brazil, two expeditions for entomological research and eco-epidemiological evaluation were conducted. METHODS: A total of 577 samples from humans, 108 from monkeys and 3,049 mosquitoes were analyzed by one or more methods: virus isolation, ELISA-IgM, RT-PCR, histopathology and immunohistochemical. RESULTS: Of the 577 human samples, 531 were tested by ELISA-IgM, with 3 positives, and 235 were inoculated into mice and 199 in cell culture, resulting in one virus isolation. One sample was positive by histopathology and immunohistochemical. Using RT-PCR, 25 samples were processed with 4 positive reactions. A total of 108 specimens of monkeys were examined, 108 were inoculated into mice and 45 in cell culture. Four virus strains were isolated from Alouattacaraya. A total of 931 mosquitoes were captured in Sao Jose do Rio Preto and 2,118 in Ribeirão Preto and separated into batches. A single isolation of YFV was derived from a batch of 9 mosquitoes Psorophoraferox, collected in Urupês, Ribeirão Preto region. A serological survey was conducted with 128 samples from the municipalities of São Carlos, Rincão and Ribeirão Preto and 10 samples from contacts of patients from Ribeirão Preto. All samples were negative by ELISA-IgM for YFV. CONCLUSIONS: The results confirm the circulation of yellow fever, even though sporadic, in the Sao Paulo State and reinforce the importance of vaccination against yellow fever in areas considered at risk.


2018 ◽  
Vol XXIII (137) ◽  
pp. 32-42
Author(s):  
Rodrigo H. F. Teixeira ◽  
Thais Eleonora Madeira Buti ◽  
André Luiz Mota da Costa

Main mortality causes of neotropical primates are trauma and viral, bacterial and parasitic diseases. In all cases of animal death necropsy, histopathology, and complementary exams are essential to determine the cause of death. Between May 2017 and May 2018, 59 cases of death of non-human primates were registered during the Yellow Fever outbreak in the region of Sorocaba, São Paulo, Brazil. Five species of the genera Callithrix, Alouatta and Sapajus were identified. Wildlife and captivity animals were represented. All biological materials collected during necropsies were submitted to Instituto Adolf Lutz (in São Paulo, Brazil) to be tested for the Yellow Fever virus. Documented causes of death included Yellow Fever, unspecified trauma, interspecies and intraspecies aggression, firearm-induced trauma, pneumonia, and carbamate toxicosis.


Sign in / Sign up

Export Citation Format

Share Document