Numerical study of micro-scale EHD conduction pumping: The effect of pump orientation and flow inertia on heterocharge layer morphology and flow distribution control

2021 ◽  
Vol 111 ◽  
pp. 103548
Author(s):  
Michal Talmor ◽  
Jamal Seyed-Yagoobi
2020 ◽  
Vol 48 (4) ◽  
pp. 1291-1308 ◽  
Author(s):  
Amin Deyranlou ◽  
Josephine H. Naish ◽  
Christopher A. Miller ◽  
Alistair Revell ◽  
Amir Keshmiri

Author(s):  
Miad Yazdani ◽  
Jamal Seyed-Yagoobi

The control of fluid flow distribution in micro-scale tubes is numerically investigated. The flow distribution control is achieved via electric conduction mechanism. In electrohydrodynamic (EHD) conduction pumping, when an electric field is applied to a fluid, dissociation and recombination of electrolytic species produces heterocharge layers in the vicinity of electrodes. Attraction between electrodes and heterocharge layers induces a fluid motion and a net flow is generated if the electrodes are asymmetric. The numerical domain comprises a 2-D manifold attached to two bifurcated tubes with one of the tubes equipped with a bank of uniquely designed EHD-conduction electrodes. In the absence of electric field, the total flow supplied at the manifold’s inlet is equally distributed among the tubes. The EHD-conduction, however, operates as a mechanism to manipulate the flow distribution to allow the flow through one branch surpasses the counterpart of the other branch. Its performance is evaluated under various operating conditions.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Binaya Baidar ◽  
Jonathan Nicolle ◽  
Chirag Trivedi ◽  
Michel J. Cervantes

The Winter-Kennedy (WK) method is commonly used in relative discharge measurement and to quantify efficiency step-up in hydropower refurbishment projects. The method utilizes the differential pressure between two taps located at a radial section of a spiral case, which is related to the discharge with the help of a coefficient and an exponent. Nearly a century old and widely used, the method has shown some discrepancies when the same coefficient is used after a plant upgrade. The reasons are often attributed to local flow changes. To study the change in flow behavior and its impact on the coefficient, a numerical model of a semi-spiral case (SC) has been developed and the numerical results are compared with experimental results. The simulations of the SC have been performed with different inlet boundary conditions. Comparison between an analytical formulation with the computational fluid dynamics (CFD) results shows that the flow inside an SC is highly three-dimensional (3D). The magnitude of the secondary flow is a function of the inlet boundary conditions. The secondary flow affects the vortex flow distribution and hence the coefficients. For the SC considered in this study, the most stable WK configurations are located toward the bottom from θ=30deg to 45deg after the curve of the SC begins, and on the top between two stay vanes.


Author(s):  
Thomas D. Foust ◽  
Kurt D. Hamman ◽  
Brent A. Detering

The performance and capacity of Kraft recovery boilers is sensitive to black liquor velocity, droplet size and flow distribution in the furnace. Studies have shown that controlling droplet size and flow distribution improves boiler efficiency while allowing increased flight drying and devolatilization, and decreased carryover. The purpose of this study is to develop a robust two-phase numerical model to predict black liquor splashplate nozzle spray characteristics. A three-dimensional time dependent numerical study of black liquor sheet formation and sheet breakup is described. The volume of fluid (VOF) model is used to simulate flow through the splashplate nozzle up to initial sheet breakup and droplet formation. The VOF model solves the conservation equations of volume fraction and momentum utilizing the finite volume technique. Black liquor velocity, droplet size and flow distribution over a range of operating parameters are simulated using scaled physical models of splashplate nozzles. The VOF model is compared to results from a flow visualization experiment and experimental data found in the literature. The details of the simulation and experimental results are presented.


Author(s):  
Manoj Siva ◽  
Arvind Pattamatta ◽  
Sarit Kumar Das

A common assumption in basic heat exchanger design theory is that fluid is distributed uniformly at the inlet of the exchanger on each fluid side and throughout the core. However in reality, uniform flow distribution is never achieved in a heat exchanger and is referred to as flow maldistribution. Flow maldistribution is generally well understood for the macrochannel system. But it is still unclear whether the assumptions underlying the flow distribution in conventional macrochannel heat exchangers hold good for microchannel system. In this regard, extensive numerical simulations are carried out in a ‘U’ type parallel micro-channel system in order to study flow and heat transfer maldistribution and validated with in-house experimental data. A detailed parametric analysis is carried out to characterize flow maldistribution in a microchannel system and to study the effect of geometrical factors such as number of channels, n, Area of cross section of the channel Ac, manifold cross section area Ap, and flow parameter such as Reynolds number, Re, on the pressure and temperature distribution. In order to minimize the variation in pressure and to reduce temperature hot spots in the microchannel, a Response surface based surrogate approximation (RSA) and a gradient based search algorithm are used to arrive at the best configuration of microchannel cooling system. A three level factorial design involving three parameters namely Ac/Ap, Re, n are considered. The results from the optimization indicate that the case of n = 5, Ac/Ap = 0.12, and Re = 100 is the best possible configuration to alleviate flow maldistribution and hotspot formation in microchannel cooling system.


Author(s):  
Selvan Bellan ◽  
Cristina Cerpa Saurez ◽  
Jose Gonzalez-Aguilar ◽  
Manuel Romero

A lab-scale solar thermochemical reactor is designed and fabricated to study the thermal reduction of non-volatile metal oxides, which operates simultaneously as solar collector and as chemical reactor. The main purpose of this reactor is to achieve the first step in two-step thermochemical cycles. The chemical conversion rate strongly depends on the temperature and fluid flow distribution around the reactant, which are determined by the reactor geometry. The optimal design depends on the constraints of the problem and on the operating parameters. Hence, the objective of this investigation is to analyze the heat and mass transfer in the vertically-oriented chemical reactor by a CFD model and to optimize the reactor design. The developed numerical model is validated by comparing the simulation results with reported model. The influence of different technical and operating parameters on the temperature distribution and the fluid flow of the reactor are studied.


Sign in / Sign up

Export Citation Format

Share Document