Effect of moisture transfer on internal surface temperature

2013 ◽  
Vol 60 ◽  
pp. 83-91 ◽  
Author(s):  
Yanfeng Liu ◽  
Yingying Wang ◽  
Dengjia Wang ◽  
Jiaping Liu
2015 ◽  
Vol 11 (2) ◽  
pp. 3017-3022
Author(s):  
Gurban Akhmedov

Results of researches show, that film p-n the structures received by a method of discrete thermal evaporation in a uniform work cycle, are suitable for use in low-voltage devices.  As a result of work are received p-n heterojunctions in thin-film execution, described by high values of differential resistance. Show that, thermo endurance - T0 maybe using as characteristic of thermo endurance of optic materials. If heating flow, destruction temperature and internal surface temperature is measured during test, it is possible to determine value T0 and other necessity characteristics. As a result of the taking test was lead to comparison evaluation of considered materials. Working range of heating flow and up level heating embark have been determined.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 180
Author(s):  
Asif Ali ◽  
Lorenzo Cocchi ◽  
Alessio Picchi ◽  
Bruno Facchini

The scope of this work was to develop a technique based on the regression method and apply it on a real cooled geometry for measuring its internal heat transfer distribution. The proposed methodology is based upon an already available literature approach. For implementation of the methodology, the geometry is initially heated to a known steady temperature, followed by thermal transient, induced by injection of ambient air to its internal cooling system. During the thermal transient, external surface temperature of the geometry is recorded with the help of infrared camera. Then, a numerical procedure based upon a series of transient finite element analyses of the geometry is applied by using the obtained experimental data. The total test duration is divided into time steps, during which the heat flux on the internal surface is iteratively updated to target the measured external surface temperature. The final procured heat flux and internal surface temperature data of each time step is used to find the convective heat transfer coefficient via linear regression. This methodology is successfully implemented on three geometries: a circular duct, a blade with U-bend internal channel, and a cooled high pressure vane of real engine, with the help of a test rig developed at the University of Florence, Italy. The results are compared with the ones retrieved with similar approach available in the open literature, and the pros and cons of both methodologies are discussed in detail for each geometry.


2016 ◽  
Vol 11 (1) ◽  
pp. 77-84
Author(s):  
Veronika Labovská ◽  
Dušan Katunský

Abstract Historical building envelope is characterized by a large accumulation that impact is mainly by changing the inner surface temperature over time. The minimum value of the inner surface temperature is set Code requirements. In the case of thermal technology assessment of building envelope contemplates a steady state external temperature and internal environment, thereby neglecting the heat accumulation capacity of building envelopes. Monitoring surface temperature in real terms in situ shows the real behavior of the building envelope close to reality. The recorded data can be used to create a numerical model for the simulation.


2014 ◽  
Vol 525 ◽  
pp. 588-592
Author(s):  
Zhang Yuan Wang ◽  
Xiang Mei Zhang ◽  
Wan Sheng Yang

Aim of the paper is to investigate the indoor thermal comfort of the buildings. This work is undertaken by the combination of the literature review and experimental measurement and analyses, on basis of the selected 12 public buildings in Dongguan City (Guangdong Province, China), located at the typical sub-tropic climatic region. It was found that when the air-conditioning system was turned off, the internal surface temperature of the insulation was above a control target of 30°C; when the air-conditioning system was turned on, the internal surface temperature of the insulation was below the control target of 30°C, meeting the requirement of the thermal comfort of human body in summer. These figures will be helpful in the determination of the quantitative control target to improve the indoor thermal comfort in the subtropical areas.


Author(s):  
Arun Kumar Pujari ◽  
Bhamidi Prasad ◽  
Nekkanti Sitaram

Experimental and computational heat transfer investigations are reported in the interior side of a nozzle guide vane (NGV) subjected to combined impingement and film cooling. The domain of study is a two dimensional five-vane cascade having four passages. Each vane has a chord length of 228 mm and the pitch distance between the vanes is 200 mm. The vane internal surface is cooled by dry air supplied through the two impingement inserts: the front and the aft. The mass flow through the impingement chamber is varied, for a fixed spacing (H) to jet diameter (d) ratio of 1.2. The surface temperature distributions, at certain locations of the vane interior, are measured by pasting strips of liquid crystal sheets. The vane interior surface temperature distribution is also obtained by computations carried out by using Shear stress transport (SST) k-ω turbulence model in the ANSY FLUENT-14 flow solver. The computational data are in good agreement with the measured values of temperature. The internal heat transfer coefficients are thence determined along the leading edge and the mid span region from the computational data.


2020 ◽  
Vol 37 (4) ◽  
pp. 327-342
Author(s):  
Arun Kumar Pujari ◽  
B. V. S. S. S Prasad ◽  
Nekkanti Sitaram

AbstractThe effect of conjugate heat transfer is investigated on a first stage nozzle guide vane (NGV) of a high pressure gas turbine which has both impingement and film cooling holes. The study is carried out computationally by considering a linear cascade domain, having two passages formed between the vanes, with a chord length of 228 mm and spacing of 200 mm. The effect of (i) coolant and mainstream Reynolds numbers, (ii) thermal conductivity (iii) temperature difference between the mainstream and coolant at the internal surface of the nozzle guide vane are investigated under conjugate thermal condition. The results show that, with increasing coolant Reynolds number the lower conducting material shows larger percentage decrease in surface temperature as compared to the higher conducting material. However, the internal surface temperature is nearly independent of mainstream Reynolds number variation but shows significant variation for higher conducting material. Further, the temperature gradient within the solid thickness of NGV is higher for the lower conductivity material.


Author(s):  
Arun Kumar Pujari ◽  
B. V. S. S. S. Prasad ◽  
Nekkanti Sitaram

Experimental and computational heat transfer investigations are reported on the interior side of a nozzle guide vane (NGV) subjected to combined impingement and film cooling. The domain of study is a two-dimensional five-vane cascade having a space chord ratio of 0.88. The vane internal surface is cooled by dry air, supplied through the two impingement inserts: the front and the aft. The blowing ratio (ρcVc/ρmVm) is varied systematically by varying the coolant mass flow through the impingement chamber and also by changing the mainstream Reynolds number, but by keeping a fixed spacing (H) to jet diameter (d) ratio of 1.2. The surface temperature distributions, at certain locations of the vane interior surface, are measured by pasting strips of liquid crystal sheets. The vane interior surface temperature distribution is also obtained by the computations carried out by using shear stress transport (SST) k–ω turbulence model in the flow solver ansys fluent-14. The computational data are in good agreement with the measured values of temperature. The internal heat transfer coefficients are thence determined from the computational data. The results show that, when the blowing ratio is increased by increasing the coolant flow rate, the average internal surface temperature decreases. However, when the blowing ratio is varied by increasing the mainstream Reynolds number, the internal surface temperature increases. Further, the temperature variations are different all along the internal surface from the leading edge to the trailing edge and are largely dependent on the coolant flow distributions on the internal as well as the external sides.


Sign in / Sign up

Export Citation Format

Share Document