scholarly journals Energy consumption of hybrid smart water-filled glass (SWFG) building envelope

2021 ◽  
Vol 230 ◽  
pp. 110508
Author(s):  
Matyas Gutai ◽  
Abolfazl Ganji Kheybari
2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 997
Author(s):  
Davide Coraci ◽  
Silvio Brandi ◽  
Marco Savino Piscitelli ◽  
Alfonso Capozzoli

Recently, a growing interest has been observed in HVAC control systems based on Artificial Intelligence, to improve comfort conditions while avoiding unnecessary energy consumption. In this work, a model-free algorithm belonging to the Deep Reinforcement Learning (DRL) class, Soft Actor-Critic, was implemented to control the supply water temperature to radiant terminal units of a heating system serving an office building. The controller was trained online, and a preliminary sensitivity analysis on hyperparameters was performed to assess their influence on the agent performance. The DRL agent with the best performance was compared to a rule-based controller assumed as a baseline during a three-month heating season. The DRL controller outperformed the baseline after two weeks of deployment, with an overall performance improvement related to control of indoor temperature conditions. Moreover, the adaptability of the DRL agent was tested for various control scenarios, simulating changes of external weather conditions, indoor temperature setpoint, building envelope features and occupancy patterns. The agent dynamically deployed, despite a slight increase in energy consumption, led to an improvement of indoor temperature control, reducing the cumulative sum of temperature violations on average for all scenarios by 75% and 48% compared to the baseline and statically deployed agent respectively.


2021 ◽  
Vol 13 (8) ◽  
pp. 4175
Author(s):  
Islam Boukhelkhal ◽  
Fatiha Bourbia

The building envelope is the barrier between the interior and exterior environments. It has many important functions, including protecting the interior space from the climatic variations through its envelope materials and design elements, as well as reduction of energy consumption and improving indoor thermal comfort. Furthermore, exterior building sidings, in addition to their aesthetic appearance, can have useful textures for reducing solar gains and providing good thermal insulation performance. This research examined and evaluated the effect of external siding texture and geometry on energy performance. For this objective, a field in situ testing and investigation of surface temperature was carried out on four samples (test boxes) with different exterior textures and different orientations, under the climate zone of Constantine–Algeria during the summer period. The results indicated significant dependability between the exterior texture geometry, the percentage of shadow projected, and external surface temperature. The second part of the research involved a similar approach, exploring the effect of three types of particles with the same appearance but with different thermal characteristics. It was concluded that the natural plant aggregates “palm particles” had the best performance, which contributed to a significant reduction of external surface temperature reaching 4.3 °C, which meant decreasing the energy consumption.


Author(s):  
Livio de Santoli

Building sustainability, in term of energy efficiency, low-impact building materials, renewable energy, has experienced significant growth during the past years. In response to the growing dependence on fossil fuels and importations, due in part to the increase of energy consumption in the residential sector (in 2009 46,9 Mtep, 3% more than 2008) and the recent European directives (i.e. EU 2009/28/CE) requiring CO2 emissions cut of up to 13% in 2020, there is interest in promoting energy efficiency and renewable energy technologies, which are suitable for residential applications. In this paper we present an overview on actions related to minimization of buildings energy consumption in Italy. Prevalent line of action is to improve the energy performances of building envelope (Dlgs 192/05) using insulated frames, walls and roofs and replacing heat generators with condensing boilers. In addition to national directives, ONRE Report 2011 (National Observatory on building regulations) shows that 831 Municipalities (10% more than 2010) establish mandatory targets for insulation, photovoltaic solar panels, solar water heaters, heat pumps use, correct buildings orientation, saving of water resource and local materials use. In addiction an efficient energy rating of the buildings could promote the spread of energy efficiency measurement and consequently facilitate their implementation. The new energy rating system should meet international standards, regarding environment and energy aspects, and respect territorial needs.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6597
Author(s):  
Ahmet Bircan Atmaca ◽  
Gülay Zorer Gedik ◽  
Andreas Wagner

Mosques are quite different from other building types in terms of occupant type and usage schedule. For this reason, they should be evaluated differently from other building types in terms of thermal comfort and energy consumption. It is difficult and probably not even necessary to create homogeneous thermal comfort in mosques’ entire usage area, which has large volumes and various areas for different activities. Nevertheless, energy consumption should be at a minimum level. In order to ensure that mosques are minimally affected by outdoor climatic changes, the improvement of the properties of the building envelope should have the highest priority. These optimal properties of the building envelope have to be in line with thermal comfort in mosques. The proposed method will be a guide for designers and occupants in the design process of new mosques or the use of existing mosques. The effect of the thermal properties of the building envelope on energy consumption was investigated to ensure optimum energy consumption together with an acceptable thermal comfort level. For this purpose, a parametric simulation study of the mosques was conducted by varying optical and thermal properties of the building envelope for a temperature humid climate zone. The simulation results were analyzed and evaluated according to current standards, and an appropriate envelope was determined. The results show that thermal insulation improvements in the roof dome of buildings with a large volume contributed more to energy savings than in walls and foundations. The use of double or triple glazing in transparent areas is an issue that should be considered together with the solar energy gain factor. Additionally, an increasing thickness of thermal insulation in the building envelope contributed positively to energy savings. However, the energy savings rate decreased after a certain thickness. The proposed building envelope achieved a 33% energy savings compared to the base scenario.


2018 ◽  
Vol 7 (3) ◽  
pp. 1861
Author(s):  
Neveen Y. Azmy ◽  
Rania E. Ashmawy

Windows play a significant role as they largely influence the energy load. Although there are many studies on the energy-efficient windows design, there is still a lack in information about the mutual impact of windows’ size, position and orientation on the energy loads. In this paper, the effect of different window positions and orientations on the energy consumption in a typical room in an administrative building that is located in the hot climatic conditions of Cairo city, Egypt is considered. This case study has been modeled and analyzed to achieve good environmental performance for architectural space, as well as assessing its impact on the amount of natural lighting required by using the Energy Plus program. The study concludes that the WWR (Window Wall Ratio) 20% square north-oriented upper  opening consumes 25% lower energy than the rectangular 3:1 opening in the lower west-oriented façade. The upper openings are the highest in terms of light intensity, as they cover about 50% of the room area. The WWR 30% rectangular north-oriented upper 3:1 opening consumes 29% lower energy than the rectangular lower 3:1opening in the façade. Regarding light intensity, the upper openings are the best for natural lighting as the light covers more than 60% of the room area.                                                                                                                                                               


Sign in / Sign up

Export Citation Format

Share Document