Design and development of a three-phase off-board electric vehicle charger prototype for power grid voltage regulation

Energy ◽  
2017 ◽  
Vol 133 ◽  
pp. 128-141 ◽  
Author(s):  
Jia Ying Yong ◽  
Seyed Mahdi Fazeli ◽  
Vigna K. Ramachandaramurthy ◽  
Kang Miao Tan
2018 ◽  
Vol 9 (4) ◽  
pp. 2703-2713 ◽  
Author(s):  
Jia Ying Yong ◽  
Vigna K. Ramachandaramurthy ◽  
Kang Miao Tan ◽  
Jeyraj Selvaraj

2020 ◽  
Vol 53 (5-6) ◽  
pp. 884-891
Author(s):  
Zonglu Zhang

The voltage sag problem in a power grid can be solved by a voltage regulator. In this study, the voltage regulator based on thyristor was used to compensate the single-phase and three-phase voltage of voltage sag fault, so as to recover the normal level of voltage. The simulation analysis was carried out on MATLAB. The results showed that voltage sag faults mainly affected the amplitude of voltage, but not the frequency of voltage. After voltage regulation, the single-phase and three-phase voltage waveforms in the fault period had a certain recovery, but the voltage regulator had a certain hysteresis effect.


2016 ◽  
Vol 26 (08) ◽  
pp. 1650132 ◽  
Author(s):  
Zhen Li ◽  
Bin Liu ◽  
Yining Li ◽  
Siu-Chung Wong ◽  
Xiangdong Liu ◽  
...  

As a commercial interface, three-phase voltage-source inverters (VSI) are commonly equipped for energy conversion to export DC power from most distributed generation (DG) to the AC utility. Not only do voltage-source converters take charge of converting the power to the loads but support the grid voltage at the point of common connection (PCC) as well, which is dependent on the condition of the grid-connected loads. This paper explores the border collision and its interacting mechanism among the VSI, resistive interacting loads and grids, which manifests as the alternating emergence of the inverting and rectifying operations, where the normal operation is terminated and a new one is assumed. Their mutual effect on the power quality under investigation will cause the circuital stability issue and further deteriorate the voltage regulation capability of VSI by dramatically raising the grid voltage harmonics. It is found in a design-oriented view that the border collision operation will be induced within the unsuitable parameter space with respect to transmission lines of AC grid, resistive loads and internal resistance of VSI. The physical phenomenon is also identified by the theoretical analysis. With numerical simulations for various circuit conditions, the corresponding bifurcation boundaries are collected, where the stability of the system is lost via border collision.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6520
Author(s):  
Qiguo Han ◽  
Xing Wang ◽  
Pengfei Hu ◽  
Maolin Wang ◽  
Xu Luo ◽  
...  

The voltage ride through capability of the major auxiliary variable-frequency drive (VFD) in large thermal power plants is the key technical issue of power grid and source coordination. In order to test the high voltage ride through (HVRT) and low voltage ride through (LVRT) capability of the auxiliary VFD, it is necessary to develop a power supply to simulate different grid voltage sag and swell accurately. In this paper, a generator (VSSG) based on the common three-phase inverter circuit that can simulate multi-mode voltage sag/swell is proposed. The designed main circuit consisting of transformer, rectifier, DC split capacitors, three-phase inverter, and LC-filter can generate single-phase and three-phase voltage sag, swell, and phase angle jumping flexibly. The developed control strategies composed of the double closed-loop control and the neutral voltage balance control achieve accurate output, fast dynamic response, and step-less adjustment. Simulation and experiment results verify the multi-mode voltage simulation performances of the proposed VSSG, which can be effectively used to emulate power grid voltage sag and swell phenomena under the IEEE 1159 and IEC standards.


Author(s):  
Wenshao Bu ◽  
Chaochao Wang ◽  
Jinwei Li

Background: Aiming at the three-phase voltage source PWM rectifier (VSR), there have been some researches on the neural network control strategies, but the unbalanced power grid condition is always neglected. Meanwhile, about the self-detection technology of the unbalanced power grid voltage, there are still few researches. Methods: Under the unbalanced power grid conditions, this work presents a power grid voltage sensorless control strategy of the three-phase VSR. Based on the radial basis function neural network (RBF) theory, a newly PI controller with parameter self-tuning function is studied, and the RBF-PI controller is used for the closed-loop controls of the voltage and current variables. By means of T/4 delay method, the positive- and negative-sequence components of the power grid side current, and those of the equivalent virtual flux-linkage of unbalanced power grid are extracted. From the equivalent virtual flux-linkage, the unbalanced power grid voltage is reconstructed online. Results: Under the load mutation condition, the power grid voltage sensorless control of threephase VSR is achieved, the system response characteristics are analyzed. From the simulation experimental results, it can be seen that the unbalanced power grid voltage can be quickly tracked, and the sinusoidal control of the power grid side current can be achieved. In addition, the control system has a series of advantages, such as a faster dynamic response speed, a stronger robustness and a smaller DC side voltage ripple. Conclusion: The proposed unbalanced power grid voltage sensorless control strategy of threephase VSR is effective.


Sign in / Sign up

Export Citation Format

Share Document