scholarly journals Effect of the Intake Valve Opening Timings and Fuel Injection Pressures on the Exhaust Emission Characteristics of a Gasoline Engine at Part Load Condition

2011 ◽  
Vol 35 (3) ◽  
pp. 317-322
Author(s):  
Hyung-Min Lee ◽  
Yeon-Hwan Jeong
2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110671
Author(s):  
Wei Duan ◽  
Zhaoming Huang ◽  
Hong Chen ◽  
Ping Tang ◽  
Li Wang ◽  
...  

Pre-chamber jet ignition is a promising way to improve fuel consumption of gasoline engine. A small volume passive pre-chamber was tested at a 1.5L turbocharged GDI engine. Combustion and emission characteristics of passive pre-chamber at low-speed WOT and part load were studied. Besides, the combustion stability of the passive pre-chamber at idle operation has also been studied. The results show that at 1500 r/min WOT, compared with the traditional spark ignition, the combustion phase of pre-chamber is advanced by 7.1°CA, the effective fuel consumption is reduced by 24 g/kW h, and the maximum pressure rise rate is increased by 0.09 MPa/°CA. The knock tendency can be relieved by pre-chamber ignition. At part load of 2000 r/min, pre-chamber ignition can enhance the combustion process and improve the combustion stability. The fuel consumption of pre-chamber ignition increases slightly at low load, but decreases significantly at high load. Compared with the traditional spark ignition, the NOx emissions of pre-chamber increase significantly, with a maximum increase of about 15%; the HC emissions decrease, and the highest decrease is about 36%. But there is no significant difference in CO emissions between pre-chamber ignition and spark plug ignition. The intake valve opening timing has a significant influence on the pre-chamber combustion stability at idle operation. With the delay of the pre-chamber intake valve opening timing, the CoV is reduced and can be kept within the CoV limit.


Author(s):  
Jim S. Cowart ◽  
Leonard J. Hamilton

A Cooperative Fuels Research (CFR) gasoline engine has been modified to run on computer controlled Port Fuel Injection (PFI) and electronic ignition. Additionally a fast acting sampling valve (controlled by the engine control computer) has been placed in the engine’s intake system between the fuel injector and cylinder head in order to measure the fuel components that are vaporizing in the intake port immediately after the fuel injection event, and separately during the intake valve open period. This is accomplished by fast sampling a small portion of the intake port gases during a specified portion of the engine cycle which are then analyzed with a gas chromatograph. Experimental mixture preparation results as a function of inlet port temperature and pressure are presented. As the inlet port operates at higher temperatures and lower manifold pressures more of the injected fuels’ heavier components evolve into the vapor form immediately after fuel injection. The post-fuel injection fuel-air equivalence ratio in the intake port is characterized. The role of the fuel injection event is to produce from 1/4 to slightly over 1/2 of the combustible fuel-air mixture needed by the engine, as a function of port temperature. Fuel vapor sampling during the intake valve open period suggests that very little fuel is vaporizing from the intake port puddle below the fuel injector. In-cylinder fuel vapor sampling shows that significant fuel vapor generation must occur in the lower intake port and intake valve region.


2014 ◽  
Vol 592-594 ◽  
pp. 1632-1637
Author(s):  
Ramalingam Senthil ◽  
C. Paramasivam ◽  
Rajendran Silambarasan

Nerium methyl ester, an esterified biofuel, has an excellent cetane number and a reasonable calorific value. It closely resembles the behaviour of diesel. However, being a fuel of different origin, the standard design limits of a diesel engine is not suitable for Nerium methyl ester (NME). Therefore, in this work, a set of design and operational parameters are studied to find out the optimum performance of Nerium methyl ester run diesel engine. This work targets at finding the effects of the engine design parameter viz. fuel injection pressure (IP) on the performance with regard to specific fuel consumption (SFC), brake thermal efficiency (BTHE) and emissions of CO, CO2, HC, NOxwith N20 as fuel. Comparison of performance and emission was done for different values of injection pressure to find best possible condition for operating engine with NME. For small sized direct injection constant speed engines used for agricultural applications, the optimum injection pressure was found as 240bar.Methyl esters from Nerium, with properties close to diesel; show better performance and emission characteristics. Hence Nerium (N20) blend can be used in existing diesel engines without compromising the engine performance. Diesel (25%) thus saved will greatly help the interests of railways in meeting the demand for fuel,as diesel trains are operated at maximum load condition.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
S. F. Zainal Abidin ◽  
M. F. Muhamad Said ◽  
Z. Abdul Latiff ◽  
I. Zahari ◽  
M. Said

There are many technologies that being developed to increase the efficiency of internal combustion engines as well as reducing their fuel consumption.  In this paper, the main area of focus is on cylinder deactivation (CDA) technology. CDA is mostly being applied on multi cylinders engines. CDA has the advantage to improve fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6L four cylinders gasoline engine is studied. One-dimensional (1D) engine modeling work is performed to investigate the effect of intake valve strategy on engine performance with CDA. 1D engine model is constructed based on the 1.6L actual engine geometries. The model is simulated at various engine speeds at full load conditions. The simulated results show that the constructed model is well correlated to measured data. This correlated model is then used to investigate the CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effect of intake valve strategy is very significant on engine performance. Pumping losses is found to be reduced, thus improve fuel consumption and engine efficiency.


2016 ◽  
Vol 819 ◽  
pp. 443-448 ◽  
Author(s):  
S.F. Zainal Abidin ◽  
Mohd Farid Muhamad Said ◽  
Azhar Abdul Aziz ◽  
Mohd Azman Abas ◽  
N.I. Arishad

In automotive engine applications, the spark ignition (SI) engines can operate at various engine speed and load conditions. However, most of the time was spend at part load operations, where they operate below their rated output especially during cruising or idling. The needs of improvement in term of engine efficiency at part load operation become more popular among the engine manufacturers. One of the main reasons for efficiency dropped at part load conditions is the flow restrictions at the throttle valve opening area due to nearly-close position to control amount of inducted air into the cylinder, which leads to increasing in pumping losses. Hence, there are a lot of studies and investigations have been carried out to tackle these problems without sacrificing the original performance. This paper will investigate further the engine efficiency, performance as well as fuel economy by using one-dimensional (1-D) simulation tool. A baseline simulation model of a 1.6 liters four cylinders, port fuel injection engine has been developed based on the actual engine geometries. This baseline model applied predictive combustion to predict the amount of cylinder pressure based on actual ignition and injection timing on bench. The simulated results show a very good agreement with the measured data. Additionally, this study also proved that the deactivation half of the cylinders can significantly reduce the pumping losses of fired cylinder while eliminated the pumping work of unfired cylinders.


Author(s):  
Kokichi Sawada ◽  
Shinji Nakao ◽  
Tsuneaki Ishima ◽  
Tomio Obokata ◽  
Katsuyoshi Kawachi ◽  
...  

The structure, droplet characteristics and instantaneous fuel injection rate of two stage injection spray designed for direct injection gasoline engine were analyzed experimentally. A particle image velocimetry (PIV) to evaluate the instantaneous two-dimensional velocity field, a phase Doppler anemometer (PDA) and an instantaneous fuel flow rate meter based on a laser Doppler anemometer (LDA flow rate meter) were applied for the measurements. A swirl nozzle injector was used and injection conditions were 25 Hz of spray frequency, 2 ms and 1ms of the first and the second injection durations and 2.4, 3.3 and 9.1 ms of valve opening intervals. The initial jet of the second stage injection can overtook the main spray body of the first stage injection under the valve opening interval of 2.4 and 3.3 ms. The LDA flow rate meter made the injection rate measurement with sufficient accuracy in the two stage injection and showed the unstable second injection due to remaining pressure oscillation in the injection pipe. Both time averaged and time resolved PDA results were compared in the intermittent spray. The interaction between the first and the second sprays was also demonstrated in vector map obtained by the PIV measurement.


2004 ◽  
Vol 2004.I (0) ◽  
pp. 151-152
Author(s):  
Yukihiro AIMOTO ◽  
Shinji NAJIMA ◽  
Osamu MORIUE ◽  
Masato MIKAMI ◽  
Naoya KOJIMA

Author(s):  
Li Cao ◽  
Hua Zhao ◽  
Xi Jiang ◽  
Navin Kalian

Controlled autoignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), was achieved through the negative valve overlap approach by using small- lift camshafts. Three-dimensional multicycle engine simulations were carried out in order better to understand the effects of variable intake valve timings on the gas exchange process, mixing quality, CAI combustion, and pollutant formation in a four-stroke port fuel injection (PFI) gasoline engine. Full engine cycle simulation, including complete gas exchange and combustion processes, was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are a modified shell ignition model and a laminar and turbulent characteristic time model, which can take high residual gas fraction into account. After the validation of the model against experimental data, investigations of the effects of variable intake valve timing strategies on the CAI combustion process were carried out. These analyses show that the intake valve opening (IVO) and intake valve closing (IVC) timings have a strong infiuence on the gas exchange and mixing processes in the cylinder, which in turn affect the engine performance and emissions. Symmetric IVO timing relative to exhaust valve closing (EVC) timing tends to produce a more stratified mixture, earlier ignition timing, and localized combustion, and hence higher NO x and lower unburned HC and CO emissions, whereas retarded IVO leads to faster mixing, a more homogeneous mixture, and uniform temperature distribution.


Author(s):  
E. Movahednejad ◽  
F. Ommi ◽  
M. Hosseinalipour ◽  
O. Samimi

For spark ignition engines, the fuel-air mixture preparation process is known to have a significant influence on engine performance and exhaust emissions. In this paper, an experimental study is made to characterize the spray characteristics of an injector with multi-disc nozzle used in the engine. The distributions of the droplet size and velocity and volume flux were characterized by a PDA system. Also a model of a 4 cylinder multi-point fuel injection engine was prepared using a fluid dynamics code. By this code one-dimensional, unsteady, multiphase flow in the intake port has been modeled to study the mixture formation process in the intake port. Also, one-dimensional air flow and wall fuel film flow and a two-dimensional fuel droplet flow have been modeled, including the effects of in-cylinder mixture back flows into the port. The accuracy of model was verified using experimental results of the engine testing showing good agreement between the model and the real engine. As a result, predictions are obtained that provide a detailed picture of the air-fuel mixture properties along the intake port. A comparison was made on engine performance and exhaust emission in different fuel injection timing for 2600 rpm and different loads. According to the present investigation, optimum injection timing for different engine operating conditions was found.


Sign in / Sign up

Export Citation Format

Share Document