scholarly journals Numerical simulation and response analysis of microspherical focused logging in inclined micro-fractured formation

Author(s):  
Nan Zeyu ◽  
Fu Weishu ◽  
Liu Zhiyuan
Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 834 ◽  
Author(s):  
Vytautas Jūrėnas ◽  
Gražvydas Kazokaitis ◽  
Dalius Mažeika

A novel design of a multiple degrees of freedom (multi-DOF) piezoelectric ultrasonic motor (USM) is presented in the paper. The main idea of the motor design is to combine the magnetic sphere type rotor and two oppositely placed ring-shaped piezoelectric actuators into one mechanism. Such a structure increases impact force and allows rotation of the sphere with higher torque. The main purpose of USM development was to design a motor for attitude control systems used in small satellites. A permanent magnetic sphere with a magnetic dipole is used for orientation and positioning when the sphere is rotated to the desired position and the magnetic field synchronizes with the Earth’s magnetic dipole. Also, the proposed motor can be installed and used for robotic systems, laser beam manipulation, etc. The system has a minimal number of components, small weight, and high reliability. Numerical simulation and experimental studies were used to verify the operating principles of the USM. Numerical simulation of a piezoelectric actuator was used to perform modal frequency and harmonic response analysis. Experimental studies were performed to measure both mechanical and electrical characteristics of the piezoelectric motor.


2015 ◽  
Vol 750 ◽  
pp. 153-159
Author(s):  
Jie Dong ◽  
Xue Dong Chen ◽  
Bing Wang ◽  
Wei He Guan ◽  
Tie Cheng Yang ◽  
...  

The upper and lower courses of sea oil and gas exploitationare connected by submarine pipeline which is called life line project. Free span often occurs because of the unevenness and scour of seabed, and fatigue is one of the main failure modes.In this paper, with the finite element numerical simulation method, based on the harmonic response analysis, the research on the structural response of free span under the vibration induced by vortex was investigated, and the effect of the factors such as flow velocity, length of free span. According to the analysis results,the fatigue life of free span was evaluated.


2006 ◽  
Vol 28 (10) ◽  
pp. 1367-1377 ◽  
Author(s):  
Jun-Hong Ding ◽  
Xian-Long Jin ◽  
Yi-Zhi Guo ◽  
Gen-Guo Li

2021 ◽  
Vol 11 (18) ◽  
pp. 8622
Author(s):  
Xiaofei Du ◽  
Qidi Fu ◽  
Jianrun Zhang ◽  
Chaoyong Zong

The acoustic black hole (ABH) structures have the potential to achieve structural vibration suppression and noise reduction through the effect of the ABH on the concentration and manipulation of flexural waves. In this paper, a new solution is proposed to embed 2-D ABHs on the support plate to suppress the transmission of compressor vibration to the refrigerator body. The vibration and acoustic measurement experiment of the compressor, the support plate and the refrigerator body, and the coherence analysis of the vibration signals and acoustic signal are carried out to determine the influence of the compressor vibration on the vibration of the refrigerator body and the radiation sound of the back wall. The concentration and manipulation effects of 2-D ABH on flexural waves are verified by numerical simulation of flexural wave propagation in the time domain. FEM models of the original support plate and the damping ABH support plate are established to investigate the comprehensive effect of the 2-D ABHs and the damping layers on the vibration characteristics of the support plate through vibration modal and dynamic response analysis. Numerical simulation results show that the 2-D damping ABHs can suppress the vibrations generated by the compressor at specific frequencies in the middle and high-frequency bands from being transmitted to the refrigerator body through the support plate.


Sign in / Sign up

Export Citation Format

Share Document