Numerical Simulation Techniques for Damage Response Analysis of Composite Structures

Author(s):  
Shirsendu Sikdar ◽  
Wim Van Paepegem ◽  
Wiesław Ostachowiczc ◽  
Mathias Kersemans

This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 180
Author(s):  
Kirill Minchenkov ◽  
Alexander Vedernikov ◽  
Alexander Safonov ◽  
Iskander Akhatov

Pultrusion is one of the most efficient methods of producing polymer composite structures with a constant cross-section. Pultruded profiles are widely used in bridge construction, transportation industry, energy sector, and civil and architectural engineering. However, in spite of the many advantages thermoplastic composites have over the thermoset ones, the thermoplastic pultrusion market demonstrates significantly lower production volumes as compared to those of the thermoset one. Examining the thermoplastic pultrusion processes, raw materials, mechanical properties of thermoplastic composites, process simulation techniques, patents, and applications of thermoplastic pultrusion, this overview aims to analyze the existing gap between thermoset and thermoplastic pultrusions in order to promote the development of the latter one. Therefore, observing thermoplastic pultrusion from a new perspective, we intend to identify current shortcomings and issues, and to propose future research and application directions.


2011 ◽  
Vol 279 ◽  
pp. 181-185 ◽  
Author(s):  
Guo Hua Zhao ◽  
Qing Lian Shu ◽  
Bo Sheng Huang

This paper proposes a material model of AS4/PEEK, a typical thermoplastic composite material, for the general purpose finite element code—ANSYS, which can be used to predict the mechanical behavior of AS4/PEEK composite structures. The computational result using this model has a good agreement with the test result. This investigation can lay the foundation for the numerical simulation of thermoplastic composite structures.


Author(s):  
A. R. Ansari ◽  
H. B. Khaleeq ◽  
A. Thakker

This paper presents a comparison of self-rectifying turbines for the Oscillating Water Column (OWC) based Wave Energy power extracting device using numerical simulation. The two most commonly used turbines for OWC based devices, the Impulse and the Wells turbines were evaluated under real sea simulated conditions. Assuming the quasi-steady condition, experimental data for both 0.6m turbines with 0.6 hub to tip ratio was used to predict their behavior under real sea conditions. The real sea water surface elevation time history data was used to simulate the flow conditions using standard numerical simulation techniques. A simple geometry of the OWC was considered for the simulation. The results show that the overall mean performance of an Impulse turbine is better than the Wells turbine under unsteady, irregular real sea conditions. The Impulse turbine was observed to be more stable over a wide range of flow conditions. This paper reports the comparison of performance characteristics of both these turbines under simulated real sea conditions.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 834 ◽  
Author(s):  
Vytautas Jūrėnas ◽  
Gražvydas Kazokaitis ◽  
Dalius Mažeika

A novel design of a multiple degrees of freedom (multi-DOF) piezoelectric ultrasonic motor (USM) is presented in the paper. The main idea of the motor design is to combine the magnetic sphere type rotor and two oppositely placed ring-shaped piezoelectric actuators into one mechanism. Such a structure increases impact force and allows rotation of the sphere with higher torque. The main purpose of USM development was to design a motor for attitude control systems used in small satellites. A permanent magnetic sphere with a magnetic dipole is used for orientation and positioning when the sphere is rotated to the desired position and the magnetic field synchronizes with the Earth’s magnetic dipole. Also, the proposed motor can be installed and used for robotic systems, laser beam manipulation, etc. The system has a minimal number of components, small weight, and high reliability. Numerical simulation and experimental studies were used to verify the operating principles of the USM. Numerical simulation of a piezoelectric actuator was used to perform modal frequency and harmonic response analysis. Experimental studies were performed to measure both mechanical and electrical characteristics of the piezoelectric motor.


Sign in / Sign up

Export Citation Format

Share Document