Semicircular bending fracture test to evaluate fracture properties and ductility of cement mortar reinforced by scrap tire recycled steel fiber

2020 ◽  
Vol 236 ◽  
pp. 107228 ◽  
Author(s):  
Xijun Shi ◽  
Leonardo Brescia-Norambuena ◽  
Cesario Tavares ◽  
Zachary Grasley
Author(s):  
Xijun Shi ◽  
Leonardo Brescia-Norambuena ◽  
Zachary Grasley ◽  
Joshua Hogancamp

Thanks to better processing technology, quality recycled steel fiber (RSF) is routinely extracted from scrap tires, offering opportunities to reinforce cementitious materials in a more economical and sustainable manner. In this study, a detailed experimental program on cement mortar reinforced by up to 2 vol. % RSF was carried out. The work involved conventional tests to characterize cement mortar mechanical properties including compressive strength, elastic modulus, and splitting tensile strength. It also featured an innovative semi-circular bending (SCB) fracture test to characterize fracture-related properties, and a customized ring test to study the cracking resistance under restrained drying shrinkage of the studied mortars. The combined use of the fracture and ring tests is believed to lead to a better assessment of concrete structure behaviors in the field. Based on the test results, the addition of up to 2% RSF shows noticeable improvement on the splitting tensile strength, but it has marginal effects on the cement mortar compressive strength and elastic modulus. The improved fracture properties of the cement mortar reinforced by 2% RSF from the SCB fracture test demonstrate that the RSF-reinforced mortar not only has a better resistance to the initiation of major cracks but also exhibits an enhanced post-cracking performance. Based on the ring test results, the longer cracking time and higher residual strain level of the 2% RSF mortar samples clearly reveal that the RSF could effectively delay and bridge cracks.


2014 ◽  
Vol 1000 ◽  
pp. 281-284 ◽  
Author(s):  
Michal Matysík ◽  
Libor Topolář ◽  
Petr Daněk ◽  
Hana Šimonová ◽  
Tomáš Vymazal ◽  
...  

This paper reports the analysis of acoustic emission signals captured during three-point bending fracture test of specimens of concrete. Much has been said in literature about the fracture energy of concrete and its importance. Acoustic emission is an experimental tool well suited for monitoring fracture processes. Quantitative acoustic emission techniques were used to measure micro fracture properties. For three different concrete mixtures typical acoustic emission patterns were identified in the acoustic emission records to further describe the under-the-stress behaviour and failure development. An understanding of microstructure–performance relationships is the key to true understanding of material behaviours. The results obtained in the laboratory are useful to understand the various stages of micro-cracking activity during the fracture process in quasi-brittle materials such as concrete and extend them for field applications.


2012 ◽  
Vol 174-177 ◽  
pp. 668-671
Author(s):  
He Ting Zhou

Steel fiber has a fine nature in reinforcing concrete. This essay aims to find out the influence of physical forms of steel fiber on its nature of reinforcement. By comparing two types of cement mortar reinforced by steel fibers, it is found that spiral steel fibers have a better bond strength with matrix than straight ones. Therefore, a conclusion could be drawn that physical forms of the steel fiber play a significant role in steel fiber reinforced concrete, and the experiment also serves a rewarding reference to the application of spiral steel fibers.


Author(s):  
Marcus Schulz ◽  
Jurgen Keller ◽  
Clemence Vernier ◽  
Marc Dressler ◽  
Bernhard Wunderle

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1445 ◽  
Author(s):  
Yao Ding ◽  
Yu-Lei Bai

Adding short steel fibers into slag-based geopolymer mortar and concrete is an effective method to enhance their mechanical properties. The fracture properties of steel fiber-reinforced slag-based geopolymer concrete/mortar (SGC/SGM) and unreinforced control samples were compared through three-point bending (TPB) tests. The influences of steel fiber volume contents (1.0%, 1.5% and 2.0%) on the fracture properties of SGC and SGM were studied. Load-midspan deflection (P-δ) curves and load-crack mouth opening displacement (P-CMOD) curves of the tested beams were recorded. The compressive and splitting tensile strengths were also tested. The fracture energy, flexural strength parameters, and fracture toughness of steel fiber-reinforced SGC and SGM were calculated and analyzed. The softening curves of steel fiber-reinforced SGC and SGM were determined using inverse analysis. The experimental results show that the splitting tensile strength, fracture energy, and fracture toughness are significantly enhanced with fiber incorporation. A strong correlation between the equivalent and residual flexural strengths is also observed. In addition, the trilinear strain-softening curves obtained by inverse analysis predict well of the load-displacement curves recorded from TPB tests.


Sign in / Sign up

Export Citation Format

Share Document