Scrap tire steel fiber as a substitute for commercial steel fiber in cement mortar: Engineering properties and cost-benefit analyses

2018 ◽  
Vol 134 ◽  
pp. 248-256 ◽  
Author(s):  
Obinna Onuaguluchi ◽  
Nemkumar Banthia
2012 ◽  
Vol 174-177 ◽  
pp. 668-671
Author(s):  
He Ting Zhou

Steel fiber has a fine nature in reinforcing concrete. This essay aims to find out the influence of physical forms of steel fiber on its nature of reinforcement. By comparing two types of cement mortar reinforced by steel fibers, it is found that spiral steel fibers have a better bond strength with matrix than straight ones. Therefore, a conclusion could be drawn that physical forms of the steel fiber play a significant role in steel fiber reinforced concrete, and the experiment also serves a rewarding reference to the application of spiral steel fibers.


2017 ◽  
Vol 728 ◽  
pp. 379-383 ◽  
Author(s):  
Warun Wongprachum ◽  
Manote Sappakittipakorn ◽  
Pijit Jiemvarangkul

Surfaces of hydraulic concrete conduits where significant abrasion of waterborne sediment can occur often degrade and need a regular repair to maintain their serviceability. In this research, thin overlay made of fiber reinforced cement mortar was introduced as a repair measures. Its resistance to underwater abrasion was therefore experimentally evaluated following the procedures of ASTM C 1138. This research utilized three types of fiber: steel fiber, polypropylene fiber, and micro polypropylene fiber (the micro polypropylene fiber was used only in a combination with either the steel or the polypropylene fiber). The influence of these fibers on the abrasion resistance of fiber reinforced cement mortar was then determined in terms of weight loss. The weight loss results showed that the fibers added to mortar specimens can enhance the abrasion resistance. Between the steel and polypropylene fiber, the latter provided better abrasion resistance. In case of the combination mixes, the micro polypropylene fiber increased abrasion resistance when combined with the polypropylene fiber but had no benefit when combined with the steel fiber.


1992 ◽  
Vol 19 (5) ◽  
pp. 912-923 ◽  
Author(s):  
Neil N. Eldin ◽  
Ahmed B. Senouci

Growing piles of discarded tires are potential sources of fire and health hazards. The current disposal methods are wasteful and costly. As a possible solution to the problem of scrap-tire disposal, an experimental study was conducted to examine the potential use of rubber aggregate (tire chips and crumb rubber) as mineral aggregate substitute in Portland cement concrete mixes. The research focused on determining the strength characteristics of rubberized concrete and examined the relationship between the size, percentage, and shape of rubber aggregate and the strength measured.Rubberized concrete was found to possess good esthetics, acceptable workability, and a smaller unit weight than plain concrete. However, it exhibited low compressive and tensile strengths and lower resistance to repeated freezing and thawing cycles than that of plain concrete. A statistical analysis of the experimental data suggested that only the percentage by volume of rubber in the mix has a significant effect on strength. The size and shape was found insignificant. Unlike plain concrete, rubberized concrete did not demonstrate the typical brittle failure. It exhibited a ductile, plastic failure, and showed the ability to absorb a large amount of plastic energy under compressive and tensile loads. Key words: rubberized concrete, concrete properties, compression, durability, failure, modulus of elasticity, slump, tension, toughness, workability.


2010 ◽  
Vol 168-170 ◽  
pp. 456-459
Author(s):  
Hai Yan Yuan ◽  
Shui Zhang ◽  
Guo Zhong Li

By adopting the method of orthogonal experimental design, the effect of three independent variables, that is steel fiber fraction, polypropylene fiber fraction and silica fume fraction on the compressive strength, flexural strength and shrinkage of cement mortar was studied. The results indicate that steel fiber is one of the most important factors affecting compressive strength and shrinkage, and polypropylene fiber is one of the most important factors affecting flexural strength and shrinkage of cement mortar. By using deviation analysis to analyze the orthogonal experiment results, the optimized mix proportion of hybrid fiber reinforced cement mortar is determined. The hybrid effect of steel fiber and polypropylene fiber on the properties of cement mortar is discussed.


2014 ◽  
Vol 584-586 ◽  
pp. 1282-1288 ◽  
Author(s):  
Sung Won Yoo ◽  
Sang Hwa Jung ◽  
Seung Jun Kwon

HVFAC (High Volume Fly Ash Concrete) is an attractive construction material with cost benefit and reduced CO2emission. In this paper engineering properties such as compressive and shear strength are evaluated and their characteristics are investigated. For this work HVFAC with FA (Fly Ash) replacement ratio of 35% and 50% are prepared and strength (compressive, shear, and bond) are measured with basic parameters like elasticity and ultimate strain. Test results are compared with conventional predictions from Korea Structural Code and their applicabilities are evaluated. In bond strength and elasticity in HVFAC are evaluated to need reasonable coefficients for HVFAC design.


2018 ◽  
Vol 162 ◽  
pp. 04008
Author(s):  
Ikbal Gorgis ◽  
Waleed Abbas ◽  
Nadia Moneen

Tensile plate specimens with dimension of 450×100×40mm were cast with 3D glass fabric having three different thicknesses 6, 10 and 15mm to measure their tensile strength. Plates with one and two layers of chicken wires, as well as micro steel fiber of 0.75% volume fraction were tested under tensile for comparison with references plates. Cement mortar with 61.2MPa cube compressive strength at 28 days was designed for casing the plates. The results indicated that after cracking of the mortar the textile reinforcement adds a strain hardening trajectory, that cause failure to occurs at slightly higher load and a higher strain. The improvement in tensile strength at 28 days ranged between 5 to 30%, and for 90 days between 5 to 60% for the three types of fibres used. Based on the results a significant increase was indicated with micro steel fiber.


Sign in / Sign up

Export Citation Format

Share Document