Nonlinear structural model updating based on instantaneous frequencies and amplitudes of the decomposed dynamic responses

2015 ◽  
Vol 100 ◽  
pp. 189-200 ◽  
Author(s):  
Zuo-Cai Wang ◽  
Yu Xin ◽  
Wei-Xin Ren
Author(s):  
Hervé Algrain ◽  
Calogero Conti ◽  
Pierre Dehombreux

Abstract Finite Element Model Updating has for objective to increase the correlation between the experimental dynamic responses of a structure and the predictions from a model. Among different initial choices, these procedures need to establish a set of representative parameters to be updated in which some are in real error and some are not. It is therefore important to select the correct properties that have to be updated to ensure that no marginal corrections are introduced. In this paper the standard localization criteria are presented and a technique to separate the global localization criteria in family-based criteria for damped structures is introduced. The methods are analyzed and applied to both numerical and experimental examples; a clear enhancement of the results is noticed using the family-based criteria. A simple way to qualify the stability of a localization method to noise is presented.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Nizar Faisal Alkayem ◽  
Maosen Cao ◽  
Minvydas Ragulskis

Structural damage detection is a well-known engineering inverse problem in which the extracting of damage information from the dynamic responses of the structure is considered a complex problem. Within that area, the damage tracking in 3D structures is evaluated as a more complex and difficult task. Swarm intelligence and evolutionary algorithms (EAs) can be well adapted for solving the problem. For this purpose, a hybrid elitist-guided search combining a multiobjective particle swarm optimization (MOPSO), Lévy flights (LFs), and the technique for the order of preference by similarity to ideal solution (TOPSIS) is evolved in this work. Modal characteristics are employed to develop the objective function by considering two subobjectives, namely, modal strain energy (MSTE) and mode shape (MS) subobjectives. The proposed framework is tested using a well-known benchmark model. The overall strong performance of the suggested method is maintained even under noisy conditions and in the case of incomplete mode shapes.


Author(s):  
L. J. Jiang ◽  
K. W. Wang ◽  
J. Tang

Model updating plays an important role in structural design and dynamic analysis. The process of model updating aims to produce an improved mathematical model by correlating the initial model with the experimentally measured data. There are a variety of techniques available for model updating using dynamic and static measurements of the structure’s behavior. This paper focuses on the model updating methods using the measured natural frequencies of the structure. The practice of model updating using only the natural frequencies encounters two well-known limitations: deficiency of frequency measurement data, and low sensitivity of measured natural frequencies with respect to the physical parameters that need to be updated. To overcome these limitations, a novel model updating method is presented in this paper. First, closed-loop control is applied to the structure to enhance the sensitivity of natural frequencies to the updating parameters. Second, by including the natural frequencies based on a series of sensitivity-enhanced closed-loop systems, we can significantly enrich the frequency measurement data available for model updating. Using the natural frequencies of these sensitivity-enhanced closed-loop systems, an iterative process is utilized to update the physical parameters in the initial model. To demonstrate and verify the proposed method, case studies are carried out using a cantilevered beam structure. The natural frequencies of a series of sensitivity-enhanced closed-loop systems are utilized to update the mass and stiffness parameters in the initial FE model. Results show that the modeling errors in the mass and stiffness parameters can be accurately identified by using the proposed model updating method.


Author(s):  
José Roberto F. Arruda ◽  
Carlson Antonio M. Verçosa

Abstract A new structural model updating method based on the dynamic force balance is presented. The method consists of rearranging the spectral equation so that measured modes and natural frequencies can be used to compute directly updated stiffness coefficients. The proposed method preserves both the structural connectivity and reciprocity, which translate into sparsity and symmetry of the stiffness matrix, respectively. Large changes in small-valued stiffness coefficients are avoided using parameter weighting in the rearranged spectral equation solution. It is shown that the proposed method produces results which are similar to the results obtained using Alvar Kabe’s method, with the advantages of simpler formulation and smaller computational cost. A simple example of an 8 degrees-of-freedom mass-spring system, originally used by Kabe to present his method, is used here to evaluate the proposed method.


Sign in / Sign up

Export Citation Format

Share Document