scholarly journals Damage Diagnosis in 3D Structures Using a Novel Hybrid Multiobjective Optimization and FE Model Updating Framework

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Nizar Faisal Alkayem ◽  
Maosen Cao ◽  
Minvydas Ragulskis

Structural damage detection is a well-known engineering inverse problem in which the extracting of damage information from the dynamic responses of the structure is considered a complex problem. Within that area, the damage tracking in 3D structures is evaluated as a more complex and difficult task. Swarm intelligence and evolutionary algorithms (EAs) can be well adapted for solving the problem. For this purpose, a hybrid elitist-guided search combining a multiobjective particle swarm optimization (MOPSO), Lévy flights (LFs), and the technique for the order of preference by similarity to ideal solution (TOPSIS) is evolved in this work. Modal characteristics are employed to develop the objective function by considering two subobjectives, namely, modal strain energy (MSTE) and mode shape (MS) subobjectives. The proposed framework is tested using a well-known benchmark model. The overall strong performance of the suggested method is maintained even under noisy conditions and in the case of incomplete mode shapes.

Author(s):  
T. Yin ◽  
L. Yu ◽  
H. P. Zhu

This paper presents a new method for structural damage identification based on the finite element (FE) model updating techniques. First, an objective function is defined as minimizing the sum of differences between the experimental and analytical modal data (natural frequencies and mode shapes), which is set as a nonlinear least-squares problem with bound-constrains. The trust-region approach is then used to solve the minimization problem in order to make this optimization process more robust and reliable. In addition, the expansion and weighting of the original objective function are investigated so that the presented method can be well applied into the damage identification of more real structures. Finally, a numerical simulation model of two-story portal frame structure is adopted to evaluate the efficiency of the proposed technique when both the single and multiple damage cases are set up in the model. Some important issues are also discussed in this paper. The illustrated results show that the single and multiple damages on the two-story portal frame structure can be well identified by the proposed method.


2014 ◽  
Vol 919-921 ◽  
pp. 303-307 ◽  
Author(s):  
Yong Ming Fu ◽  
Ling Yu

The development of a methodology for the accurate and reliable assessment of structural damages, as one crucial step in the structural health monitoring (SHM) field, is very important to ensure the safety, integrity and stability of structures. An improved adaptive differential evolution (IADE) algorithm is proposed for structural damage detection (SDD) based on DE algorithm and FE model-updating techniques. An objective function is defined as minimizing the discrepancies between the experimental and analytical modal parameters (namely, natural frequencies and mode shapes). It is set as a nonlinear least-squares problem with bound constraints. Unlike the commonly used line-search methods, the IADE approach, a heuristic method for the direct search of the optimal point of the given objective function, is employed to make the optimization process more robust and reliable. Some numerical simulations for single and multiple damage cases of a 25-bar space truss frame structure have been conducted for evaluation on the reliability and robustness of the proposed method. The illustrated results show that the IADE algorithm is very effective for SDD. It can not only locate the structural damages but also quantify the severity of damages. Regardless of slight damage or multiple damages, the identification accuracy is very high and noise immunity is better, which shows that the IADE algorithm is feasible and effective for SDD.


2009 ◽  
Vol 09 (04) ◽  
pp. 687-709 ◽  
Author(s):  
XINQUN ZHU ◽  
HONG HAO

Studied herein are the signatures of nonlinear vibration characteristics of damaged reinforced concrete structures using the wavelet transform (WT). A two-span RC slab built in 2003 was tested to failure in the laboratory. Vibration measurements were carried out at various stages of structural damage. The vibration frequencies, mode shapes, and damping ratios at each loading stage were extracted and analyzed. It is found that the vibration frequencies are not sensitive to small damages, but are good indicators when damage is severe. The dynamic responses are also analyzed in the time–frequency domain by WT and the skeleton curve is constructed to describe the nonlinear characteristics in the reinforced concrete structures. The results show that the skeleton curves are good indicators of damage in the reinforced concrete structures because they are more sensitive to small damages than vibration frequencies.


2018 ◽  
Vol 18 (12) ◽  
pp. 1850157 ◽  
Author(s):  
Yu-Han Wu ◽  
Xiao-Qing Zhou

Model updating methods based on structural vibration data have been developed and applied to detecting structural damages in civil engineering. Compared with the large number of elements in the entire structure of interest, the number of damaged elements which are represented by the stiffness reduction is usually small. However, the widely used [Formula: see text] regularized model updating is unable to detect the sparse feature of the damage in a structure. In this paper, the [Formula: see text] regularized model updating based on the sparse recovery theory is developed to detect structural damage. Two different criteria are considered, namely, the frequencies and the combination of frequencies and mode shapes. In addition, a one-step model updating approach is used in which the measured modal data before and after the occurrence of damage will be compared directly and an accurate analytical model is not needed. A selection method for the [Formula: see text] regularization parameter is also developed. An experimental cantilever beam is used to demonstrate the effectiveness of the proposed method. The results show that the [Formula: see text] regularization approach can be successfully used to detect the sparse damaged elements using the first six modal data, whereas the [Formula: see text] counterpart cannot. The influence of the measurement quantity on the damage detection results is also studied.


Author(s):  
Ziwei Luo ◽  
Huanlin Liu ◽  
Ling Yu

In practice, a model-based structural damage detection (SDD) method is helpful for locating and quantifying damages with the aid of reasonable finite element (FE) model. However, only limited information in single or two structural states is often used for model updating in existing studies, which is not reasonable enough to represent real structures. Meanwhile, as an output-only damage indicator, transmissibility function (TF) is proven to be effective for SDD, but it is not sensitive enough to change in structural parameters. Therefore, a multi-state strategy based on weighted TF (WTF) is proposed to improve sensitivity of TF to change in parameters and in order to further obtain a more reasonable FE model for SDD in this study. First, WTF is defined by TF weighted with element stiffness matrix, and relationships between WTFs and change in structural parameters are established based on sensitivity analysis. Then, a multi-state strategy is proposed to obtain multiple structural states, which is used to reasonably update the FE model and detect structural damages. Meanwhile, due to fabrication errors, a two-stage scheme is adopted to reduce the global and local discrepancy between the real structure and the FE model. Further, the [Formula: see text]-norm and the [Formula: see text]-norm regularization techniques are, respectively, introduced for both model updating and SDD problems by considering the characteristics of problems. Finally, the effectiveness of the proposed method is verified by a simply supported beam in numerical simulations and a six-storey frame in laboratory. From the simulation results, it can be seen that the sensitivity to structural damages can be improved by the definition of WTF. For the experimental studies, compared with the FE model updated from the single structural state, the FE model obtained by the multi-state strategy has an ability to more reasonably describe the change of states in the frame. Moreover, for the given structural damages, the proposed method can detect damage locations and degrees accurately, which shows the validity of the proposed method and the reliability of the updated FE model.


Author(s):  
D. V. Nehete ◽  
S. V. Modak ◽  
K. Gupta

Finite element (FE) model updating is now recognized as an effective approach to reduce modeling inaccuracies present in an FE model. FE model updating has been researched and studied well for updating FE models of purely structural dynamic systems. However there exists another class of systems known as vibro-acoustics in which acoustic response is generated in a medium due to the vibration of enclosing structure. Such systems are commonly found in aerospace, automotive and other transportation applications. Vibro-acoustic FE modeling is essential for sound acoustic design of these systems. Vibro-acoustic system, in contrast to purely structural system, has not received sufficient attention from FE model updating perspective and hence forms the topic of present paper. In the present paper, a method for finite element model updating of coupled structural acoustic model, constituted as a problem of constrained optimization, is proposed. An objective function quantifying error in the coupled natural frequencies and mode shapes is minimized to estimate the chosen uncertain parameters of the system. The effectiveness of the proposed method is validated through a numerical study on a 3D rectangular cavity attached to a flexible panel. The material property and the stiffness of joints between the panel and rectangular cavity are used as updating parameters. Robustness of the proposed method under presence of noise is investigated. It is seen that the method is not only able to obtain a close match between FE model and corresponding ‘measured’ vibro-acoustic characteristics but is also able to estimate the correction factors to the updating parameters with reasonable accuracy.


Author(s):  
Adam C. Wroblewski ◽  
Jerzy T. Sawicki ◽  
Alexander H. Pesch

This paper presents an experimentally driven model updating approach to address the dynamic inaccuracy of the nominal finite element (FE) rotor model of a machining spindle supported on active magnetic bearings. Modeling error is minimized through the application of a numerical optimization algorithm to adjust appropriately selected FE model parameters. Minimizing the error of both resonance and antiresonance frequencies simultaneously accounts for rotor natural frequencies as well as for their mode shapes. Antiresonance frequencies, which are shown to heavily influence the model’s dynamic properties, are commonly disregarded in structural modeling. Evaluation of the updated rotor model is performed through comparison of transfer functions measured at the cutting tool plane, which are independent of the experimental transfer function data used in model updating procedures. Final model validation is carried out with successful implementation of robust controller, which substantiates the effectiveness of the model updating methodology for model correction.


2011 ◽  
Vol 291-294 ◽  
pp. 1572-1577
Author(s):  
Rui Zhao ◽  
Yi Gang Zhang

The discrete finite element (FE) model often cannot reflect structure characteristics accurately due to imply more idealistic assumptions and simplifications. Therefore, it is necessary to update FE model for structural damage identification, response calculation, safety evaluation, optimization design, and so on. This article will illustrate respectively three key steps of updating parameters selection, target function selection and optimization method in process of dynamic FE model updating of footbridge structures based on ambient excitation, and put forward a feasible updating method: combine empirical method with sensitivity analysis method to select updating parameters; joint natural frequencies, MAC and modal flexibility as target function; adopt optimization algorithm based on the optimization theory.


2007 ◽  
Vol 347 ◽  
pp. 19-34 ◽  
Author(s):  
Michael Link ◽  
Stefan Stöhr ◽  
Matthias Weiland

Computational model updating techniques are used to adjust selected parameters of finite element models in order to make the models compatible with experimental data. This is done by minimizing the differences of analytical and experimental data, for example, natural frequencies and mode shapes by numerical optimization procedures. For a long time updating techniques have also been investigated with regard to their ability to localize and quantify structural damage. The success of such an approach is mainly governed by the quality of the damage model and its ability to describe the structural property changes due to damage in a physical meaningful way. Our experience has shown that due to unavoidable modelling simplifications and measurement errors the changes of the corresponding damage parameters do not always indicate structural modifications introduced by damage alone but indicate also the existence of other modelling uncertainties which may be distributed all over the structure. This means that there are two types of parameters which have to be distinguished: the damage parameters and the other parameters accounting for general modelling and test data uncertainties. Although these general parameters may be physically meaningless they are necessary to achieve a good fit of the test data and it might happen that they cannot be distinguished from the damage parameters. For complex industrial structures it is seldom possible to generate unique structural models covering all possible damage scenarios so that one has to expect, that the parameters introduced for describing the damage will not be fully consistent with the physical reality. This is the reason why in the scientific community there is still some doubt if model based techniques can be used at all for practical purposes of damage detection and quantification under in-situ environment conditions. In the present paper we summarize the methodology of computational model updating and report about our experience with damage identification exemplified by practical examples. A new technique and an application of localising and quantifying the damage from updating the parameters of the damaged and the undamaged models simultaneously using the differences of the test data from the damaged and the undamaged structure is also presented. In this application we used the deflections (influence lines) of a beam structure measured under a slowly moving load.


Author(s):  
Dora Foti ◽  
Mariella Diaferio ◽  
Nicola Ivan Giannoccaro ◽  
Salvador Ivorra

In the present chapter the theoretical basis of different methods developed for the calibration of FEMs are discussed. In general, Model Updating techniques are based on the use of appropriate functions that iteratively update selected physical properties (characteristics of the materials, stiffness of a link, etc.). In this way the correlation between the simulated response and the target value could improve if compared to an initial value. The FE model thus obtained can be used for a detailed structural analysis with a great confidence. The technique described in the first part of the chapter is applied to the evaluation of the structural properties of the tower of the Provincial Administration Building in Bari (Italy).The final purpose is to predict the performance of the tower to different combinations of static and dynamic loads, i.e. earthquakes or other induced vibrations. Ambient vibration tests have been performed on the above mentioned tower with the aim of determining its dynamic response and developing a procedure for modeling this building (Foti et al., 2012a). The Operation Modal Analysis (OMA) has been carried out both in the frequency domain and in the time domain to extract the dominant frequencies and mode shapes of the tower.


Sign in / Sign up

Export Citation Format

Share Document