Mean crack spacing modelling for RC tension elements

2017 ◽  
Vol 150 ◽  
pp. 843-851 ◽  
Author(s):  
Gintaris Kaklauskas ◽  
Regimantas Ramanauskas ◽  
Ronaldas Jakubovskis
Keyword(s):  
Author(s):  
Yoon-Ho Cho ◽  
Terry Dossey ◽  
B. Frank Mccullough

The effect of coarse aggregate on pavement performance has been attributed to the volume of aggregate used in pavement construction. The different patterns of crack development for limestone (LS) and siliceous river gravel (SRG) are a typical example of aggregate-induced variable performance in continuously reinforced concrete pavement (CRCP). An attempt was made to find a reasonable solution for pavements with SRG. As a way to solve the performance problem observed from the SRG pavement, a blended aggregates mixture was suggested. Laboratory and field tests were performed to check the feasibility of their application in pavements. From the laboratory test, a 50:50 blending ratio was suggested after considering the effect on tensile strength and thermal coefficient of expansion. Field test sections were also constructed to verify previous performance observations for the two aggregates and to provide performance data for new variables such as blended aggregates and special curing methods. Unexpectedly, the blended mixture did not improve the performance of SRG pavement; rather it experienced worse cracking than SRG alone. A controlled experiment with additional field test sections is needed to verify or disprove this finding. The only definitive finding was that selection of aggregate in the concrete pavement is a vital consideration for the design of the pavement. The CRCP8 analytical program reasonably predicted crack spacing for both SRG and LS pavements, predicting mean crack spacing of 0.99 m (3.25 ft) for SRG and 1.98 m (6.41 ft) for the limestone. These values are somewhat below the actual spacing observed at 100 days. Data collected after the first winter period will be required to calibrate the program.


1997 ◽  
Vol 123 (3) ◽  
pp. 267-275 ◽  
Author(s):  
Ann Ping Hong ◽  
Yuan Neng Li ◽  
Zdeněk P. Bažant

2006 ◽  
Vol 45 (21) ◽  
pp. 6996-7001 ◽  
Author(s):  
Wai Peng Lee ◽  
Alexander F. Routh

2020 ◽  
Vol 10 (21) ◽  
pp. 7458
Author(s):  
Yating Zhang ◽  
Zhiyi Huang

Continuously reinforced concrete pavement (CRCP) is a pavement structure with a high performance and long service life. However, the corrosion of the longitudinal steel can result in a poor bond relationship between the steel and the concrete, affecting the load transfer efficiency between the adjacent panels and being responsible for the development of CRCP distresses. Basalt fiber-reinforced polymer (BFRP) is corrosion-resistant and has the potential to be used in CRCP. In this paper, the layout of a CRCP test section with BFRP bars constructed on G330 National Road in Zhejiang Province, China, is presented. An analytical model is proposed to predict the crack behavior of CRCP with BFRP reinforcement, with the predicted results are compared to field-measured ones. A sensitivity analysis of the BFRP design parameters on the crack spacing and crack width is conducted as well. The results show that the mean values for field-measured crack spacing and crack width are 4.85 m and 1.30 mm, respectively, which are higher than the results for traditional CRCP with steel due to the lower elastic modulus of BFRP. The analytical predictions agree reasonably well with the crack survey results. The higher the elastic modulus of BFRP, the reinforcement content (with both BFRP spacing and diameter related), and the bond stiffness coefficient between the BFRP and concrete, the less the crack spacing and crack width will be. Given the same or similar reinforcement content, a lower diameter with a smaller spacing is recommended because of its contribution to a smaller crack spacing and width.


2020 ◽  
Vol 54 (26) ◽  
pp. 3949-3965 ◽  
Author(s):  
Xuan Zheng ◽  
Jun Zhang ◽  
Zhenbo Wang

In the present paper, a modified micromechanics based model that describes the crack bridging stress in randomly oriented discontinuous fiber reinforced engineered cementitious composite is developed. In the model, effect of multiple matrix cracking on fiber embedded length, which in turn influencing fiber bridging in the composite, is taken into consideration. First, crack spacing of high strength-low shrinkage engineered cementitious composite was experimentally determined by photographing the specimen surface at some given loading points during uniaxial tensile test. The diagram of average cracking spacing and loading time of each composite is obtained based on above data. Then, fiber bridging model is modified by introducing a revised fiber embedment length as a function of crack spacing. The model is verified with uniaxial tensile test on both tensile strength and crack opening. Good agreement between model and test results is obtained. The modified model can be used in design and prediction of tensile properties of fiber reinforced cementitious composites with characteristics of multiple matrix cracking.


Author(s):  
Safa Mesut Bostancı ◽  
Ercan Gürses ◽  
Demirkan Çöker

Thermal Barrier Coatings have been widely used in modern turbine engines to protect the nickel based metal substrate from the high temperature service conditions, 1600–1800 K. In this study, some of the failure mechanisms of typical Air Plasma Sprayed Thermal Barrier Coatings (TBC) used in after-burner structures composed of three major layers: Inconel 718 substrate, NiCrAlY based metallic bond coat (BC) and Yttria Stabilized Zirconia (YSZ) based ceramic top coat (TC) are investigated. Investigation of the cracking mechanism of TBC in terms of design and performance is very important because the behavior of TBCs on ductile metallic substrates is brittle. To this end, four-point bending experiments conducted in Kütükoğlu (2015) is analyzed by using the Extended Finite Element Method (XFEM). All the analyses are conducted with the commercial finite element software ABAQUS. Three different models with varying TC and BC thicknesses are studied under four-point bending. It is observed that multiple vertical cracks are initiated in the TC. Cracks initiate at the top of YSZ and propagate through the whole TC. It is observed that the average crack spacing increases with the increasing thickness of the TC. Numerical results are found to be consistent with the experimental results. In other words, the average crack spacing for three different models are similar with the experimental results.


2018 ◽  
Vol 878 ◽  
pp. 18-22
Author(s):  
Hua Qiang Yu

UHTCC (Ultra High Toughness Cementitious Composite) is a new type of material which is widely used in this study. It is a kind of cement-based material with very good toughness. It is effective to improve the performance of damaged reinforced concrete and improve its durability. UHTCC is widely used in the reinforcement of concrete structures. There is no clear and effective method for calculating it. There is an approximate formula for the crack width of ordinary concrete. The concept of an average crack spacing is used in the derivation of the formula. The limit of UHTCC for cracks can be measured by the concept of average crack spacing. According to the obtained crack width limit, the reinforcement effect of UHTCC can be shown.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
In-Hwan Yang ◽  
Jihun Park ◽  
Kyoung-Chul Kim ◽  
Hyungbae Lee

The structural behavior of concrete beams containing recycled coarse aggregates (RCAs) was investigated in this study using detailed experimental data. Twelve concrete beams were tested in the experimental program: nine beams with varying RCA contents and three control beams with natural coarse aggregates (NCAs). The parameters for investigating the structural behavior of the RCA concrete beams under flexure were the RCA content (30%, 50%, and 100%) and tensile rebar ratio (0.50%, 0.79%, and 1.14%). The crack pattern of the RCA beams was similar to that of the NCA beams; however, the RCA beams exhibited smaller crack spacing than the NCA beams. The flexural strength was slightly affected by the RCA content. However, the ductility of the beam was not significantly influenced by the RCA content. A comparison of the experimental results and the calculations from the ACI 318 and EC 2 provisions for the flexural strength showed that the current provisions conservatively predicted the flexural strength of the RCA concrete beams.


Sign in / Sign up

Export Citation Format

Share Document