Numerical model for analysis of wind turbines under tornadoes

2020 ◽  
Vol 223 ◽  
pp. 111157
Author(s):  
Mohamed AbuGazia ◽  
Ashraf A. El Damatty ◽  
Kaoshan Dai ◽  
Wensheng Lu ◽  
Ahmed Ibrahim
Author(s):  
Yaozhi Lu ◽  
Fanzhou Zhao ◽  
Loic Salles ◽  
Mehdi Vahdati

The current development of wind turbines is moving toward larger and more flexible units, which can make them prone to fatigue damage induced by aeroelastic vibrations. The estimation of the total life of the composite components in a wind turbine requires the knowledge of both low and high cycle fatigue (LCF and HCF) data. The first aim of this study is to produce a validated numerical model, which can be used for aeroelastic analysis of wind turbines and is capable of estimating the LCF and HCF loads on the blade. The second aim of this work is to use the validated numerical model to assess the effects of extreme environmental conditions (such as high wind speeds) and rotor over-speed on low and high cycle fatigue. Numerical modelling of this project is carried out using the Computational Fluid Dynamics (CFD) & aeroelasticity code AU3D, which is written at Imperial College and developed over many years with the support from Rolls-Royce. This code has been validated extensively for unsteady aerodynamic and aeroelastic analysis of high-speed flows in gas turbines, yet, has not been used for low-speed flows around wind turbine blades. Therefore, in the first place the capability of this code for predicting steady and unsteady flows over wind turbines is studied. The test case used for this purpose is the Phase VI wind turbine from the National Renewable Energy Laboratory (NREL), which has extensive steady, unsteady and mechanical measured data. From the aerodynamic viewpoint of this study, AU3D results correlated well with the measured data for both steady and unsteady flow variables, which indicated that the code is capable of calculating the correct flow at low speeds for wind turbines. The aeroelastic results showed that increase in crosswind and shaft speed would result in an increase of unsteady loading on the blade which could decrease the lifespan of a wind turbine due to HCF. Shaft overspeed leads to significant increase in steady loading which affects the LCF behaviour. Moreover, the introduction of crosswind could result in significant dynamic vibration due to forced response at resonance.


2019 ◽  
Vol 7 (5) ◽  
pp. 134 ◽  
Author(s):  
Rui He ◽  
Ji Ji ◽  
Jisheng Zhang ◽  
Wei Peng ◽  
Zufeng Sun ◽  
...  

With the development of offshore wind energy in China, more and more offshore wind turbines are being constructed in rock-based sea areas. However, the large diameter and thin-walled steel rock-socketed monopiles are very scarce at present, and both the construction and design are very difficult. For the design, the dynamic safety during the whole lifetime of the wind turbine is difficult to guarantee. Dynamic safety of a turbine is mostly controlled by the dynamic impedances of the rock-socketed monopile, which are still not well understood. How to choose the appropriate impedances of the socketed monopiles so that the wind turbines will neither resonant nor be too conservative is the main problem. Based on a numerical model in this study, the accurate impedances are obtained for different frequencies of excitation, different soil and rock parameters, and different rock-socketed lengths. The dynamic stiffness of monopile increases, while the radiative damping decreases as rock-socketed depth increases. When the weathering degree of rock increases, the dynamic stiffness of the monopile decreases, while the radiative damping increases.


2022 ◽  
Vol 181 ◽  
pp. 692-713
Author(s):  
Ju Gao ◽  
D. Todd Griffith ◽  
Mohammad Sadman Sakib ◽  
Sung Youn Boo

2017 ◽  
Vol 17 (5) ◽  
pp. 1313-1330 ◽  
Author(s):  
Karsten Schröder ◽  
Cristian Guillermo Gebhardt ◽  
Raimund Rolfes

This article introduces a new adaptive two-step optimization algorithm for finite element model updating with special emphasis on damage localization at supporting structures of offshore wind turbines. The algorithm comprises an enhanced version of the global optimization algorithm simulated annealing, the simulated quenching method that approximates an initial guess of damage localization. Subsequently, sequential quadratic programming is used to compute the final solution adaptively. For the correlation of numerical model and measurement data, both a measure based on eigenfrequencies and mode shapes and a measure employing time series are implemented and compared with respect to their performance for damage localization. Phase balance of the time signals is achieved using cross-correlation. The localization problem is stated as a minimization problem in which the measures are used in time and modal domain as the objective function subject to constraints. Furthermore, the objective function value of the adjusted model is used to distinguish correct from wrong solutions. The functionality is proven using a numerical model of a monopile structure with simulated damage and a lab-scaled model of a tripile structure with real damage.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4122
Author(s):  
Jong-Hyeon Shin ◽  
Jong-Hwi Lee ◽  
Se-Myong Chang

In the design of wind energy farms, the loss of power should be seriously considered for the second wind turbine located inside the wake region of the first one. The rotation of the first wind-front rotor generates a high-vorticity wake with turbulence, and a suitable model is required in computational fluid dynamics (CFD) to predict the deficit of energy of the second turbine for the given configuration. A simplified numerical model based on the classical momentum theory is proposed in this study for multiple wind turbines, which is proposed with a couple of tuning parameters applied to Reynolds-averaged Navier-Stokes (RANS) analysis, resulting in a remarkable reduction of computational load compared with advanced methods, such as large eddy simulation (LES) where two parameters reflect on axial and rotational wake motion, simply tuned with the wind-tunnel test and its corresponding LES result. As a lumped parameter for the figure of merit, we regard the normalized efficiency on the kinetic power output of computational domain, which should be directed to maximize for the optimization of wind farms. The parameter surface is plotted in a dimensionless form versus intervals between turbines, and a simple correlation is obtained for a given hub height of 70% diameter and a fixed rotational speed tuned from the experimental data in a wide range.


Author(s):  
Christian Cermelli ◽  
Charlotte Leroux ◽  
Sandra Díaz Domínguez ◽  
Antoine Peiffer

This paper presents experimental results of WindFloat 1 platform and comparisons with the numerical model developed by Principle Power. The WindFloat platform is designed to support multi-megawatt wind turbines. A full-scale prototype was installed offshore Portugal from 2011 to 2016, and produced 17GWh into the Portuguese grid. An extensive monitoring system was installed, including a wave rider buoy, 6-degrees of freedom measurement devices, anemometers, strain gauges, turbine monitoring instruments. Important results obtained during the measurement campaign are described in this paper. These include power predictions, turbine and tower loads, and platform motions. Comparison with numerical simulations are also provided. The numerical analysis methodology includes fully coupled simulations, based on Orcaflex, a commercially available state-of-the-art software to compute the hydrodynamic response of floating systems, combined in the time-domain with FAST, a well-established numerical tool for the design of wind turbines. Results of these comparisons show that the numerical tools are fit for purpose, and were used to calibrate some hydrodynamic coefficients that cannot be obtained accurately with numerical analysis or scaled model tests.


Author(s):  
Tim Bunnik ◽  
Joop Helder ◽  
Erik-Jan de Ridder

The effects of operational wave loads and wind loads on offshore mono pile wind turbines are well understood. For most sites, however, the water depth is such that breaking or near-breaking waves will occur causing impulsive excitation of the mono pile and consequently considerable stresses, displacements and accelerations in the mono pile, tower and turbine. Model tests with a flexible mono pile wind turbine were carried out to investigate the effect of breaking waves. In these model tests the flexibility of the turbine was realistically modelled. These model tests were used for validation of a numerical model for the flexible response of wind turbines due to breaking waves. A focusing wave group has been selected which breaks just aft of the wind turbine. The numerical model consists of a one-way coupling between a CFD model for breaking wave loads and a simplified structural model based on mode shapes. An iterative wave calibration technique has been developed in the CFD method to ensure a good match between the measured and simulated incoming wave profile. This makes a deterministic comparison between simulations and measurements possible. This iteration is carried out in a 2D CFD domain (long-crested wave restriction) and is therefore relatively cheap. The calibrated CFD wave is then simulated in a (shorter) 3D CFD domain including a (fixed) wind turbine. The resulting wave pressures on the turbine have been used to compute the modal excitation and subsequently the modal response of the wind turbine. The horizontal accelerations resulting from this one-way coupling are in good agreement with the measured accelerations.


2017 ◽  
Author(s):  
Habib Dagher ◽  
Anthony Viselli ◽  
Andrew Goupee ◽  
Christopher Allen

Sign in / Sign up

Export Citation Format

Share Document