scholarly journals Physics-based estimates of drag coefficients for the impact pressure calculation of dense snow avalanches

2022 ◽  
pp. 113478
Author(s):  
M.L. Kyburz ◽  
B. Sovilla ◽  
J. Gaume ◽  
C. Ancey
1980 ◽  
Vol 26 (94) ◽  
pp. 179-187 ◽  
Author(s):  
P. A. Schaerer ◽  
A. A. Salway

AbstractContinuous records have been made during the passage of dry–snow avalanches of both seismic signals, which allows the avalanche speed to be estimated, and impact pressures on load cells with surface areas of 645 and 6 450 mm2. The impact pressure recordings show an initial peak followed by a base pressure. The observed initial and base pressures vary strongly within avalanches and from one avalanche to another, but, on average, they can be correlated with the frontal speed and the density of the deposited avalanche snow. It is concluded that well–developed dry–snow avalanches have an unsteady wave motion similar to the slug flow observed in ultra–rapid flow of water, and that they consist of three stratified components: dense flowing snow at the bottom, light flowing snow, and powder snow.


2001 ◽  
Vol 38 (2) ◽  
pp. 227-238 ◽  
Author(s):  
Christopher J Keylock ◽  
Massimiliano Barbolini

Use of formal risk analysis to assess avalanche danger is currently limited by a lack of knowledge of how avalanche impact pressures damage structures and cause fatalities. That is, the vulnerability component of risk is poorly specified. In this paper we outline a method for deriving vulnerability values as a function of position downslope for a range of avalanche sizes. The method is based on the weighted average of vulnerability and uses an avalanche-dynamics model embedded within a statistical framework. The models seem to behave in a consistent manner. By allowing avalanche size and stopping position to vary and calculating vulnerability as a function of distance from the stopping position, vulnerability values are less approximate than the assumption of a constant vulnerability value for each individual size. When the assumptions underlying the impact pressure - vulnerability relation are perturbed, the results seem to be robust. The method outlined here should provide a way for avalanche experts to reformulate danger zones based on return period and impact pressure so that they are set within a risk framework.Key words: risk, vulnerability, snow, avalanches, impact pressure.


1980 ◽  
Vol 26 (94) ◽  
pp. 179-187 ◽  
Author(s):  
P. A. Schaerer ◽  
A. A. Salway

Abstract Continuous records have been made during the passage of dry–snow avalanches of both seismic signals, which allows the avalanche speed to be estimated, and impact pressures on load cells with surface areas of 645 and 6 450 mm2. The impact pressure recordings show an initial peak followed by a base pressure. The observed initial and base pressures vary strongly within avalanches and from one avalanche to another, but, on average, they can be correlated with the frontal speed and the density of the deposited avalanche snow. It is concluded that well–developed dry–snow avalanches have an unsteady wave motion similar to the slug flow observed in ultra–rapid flow of water, and that they consist of three stratified components: dense flowing snow at the bottom, light flowing snow, and powder snow.


2010 ◽  
Vol 10 (7) ◽  
pp. 1531-1545 ◽  
Author(s):  
D. Bertrand ◽  
M. Naaim ◽  
M. Brun

Abstract. This paper deals with the assessment of physical vulnerability of civil engineering structures to snow avalanche loadings. In this case, the vulnerability of the element at risk is defined by its damage level expressed on a scale from 0 (no damage) to 1 (total destruction). The vulnerability of a building depends on its structure and flow features (geometry, mechanical properties, type of avalanche, topography, etc.). This makes it difficult to obtain vulnerability relations. Most existing vulnerability relations have been built from field observations. This approach suffers from the scarcity of well documented events. Moreover, the back analysis is based on both rough descriptions of the avalanche and the structure. To overcome this problem, numerical simulations of reinforced concrete structures loaded by snow avalanches are carried out. Numerical simulations allow to study, in controlled conditions, the structure behavior under snow avalanche loading. The structure is modeled in 3-D by the finite element method (FEM). The elasto-plasticity framework is used to represent the mechanical behavior of both materials (concrete and steel bars) and the transient feature of the avalanche loading is taken into account in the simulation. Considering a reference structure, several simulation campaigns are conducted in order to assess its snow avalanches vulnerability. Thus, a damage index is defined and is based on global and local parameters of the structure. The influence of the geometrical features of the structure, the compressive strength of the concrete, the density of steel inside the composite material and the maximum impact pressure on the damage index are studied and analyzed. These simulations allow establishing the vulnerability as a function of the impact pressure and the structure features. The derived vulnerability functions could be used for risk analysis in a snow avalanche context.


2006 ◽  
Vol 40 (5) ◽  
pp. 1573-1580 ◽  
Author(s):  
Jasper V. Harbers ◽  
Mark A. J. Huijbregts ◽  
Leo Posthuma ◽  
Dik van de Meent

2010 ◽  
Vol 145 ◽  
pp. 410-413 ◽  
Author(s):  
Jing Wang ◽  
He Yong Han ◽  
Qing Xue Huang ◽  
Jun Wang

The reasons for impact pressure are obtained by the research the hydraulic system of Hydraulic Rolling-Cut Shear. The impact pressure of hydraulic system is divided into direct impact and indirect impact. Based on analyzing the actual situation the measures should be taken to reduce the impact pressure when design hydraulic system. The suitable length of pipeline can improve the performance of the hydraulic system because the length is important for the impact pressure. The accumulator can absorb impact pressure and improve the work situation of servo valve. Therefore, the suitable accumulators should be set in the hydraulic system. The study provides theory basis for the pipe design of large hydraulic servo system.


Author(s):  
Kusalika Ariyarathne ◽  
Kuang-An Chang ◽  
Richard Mercier

Impact pressure due to plunging breaking waves impinging on a simplified model structure was investigated in the laboratory based on two breaking wave conditions: the wall impingement wave condition and the deck impingement wave condition. Pressure, void fraction, and velocities were measured at various locations on the deck surface. Impact pressure was correlated with the mean kinetic energy calculated based on the measured mean velocities and void fraction to obtain the impact coefficient. For the wall impingement wave condition, the relationship between impact pressure and mean kinetic energy is linear with the impact coefficient close to unity. For the deck impingement wave condition, the above relationship does not show good correlation, whereas the impact coefficient was found to be a function of the rate of pressure rise.


Sign in / Sign up

Export Citation Format

Share Document