Unequal depth beam-column joints with H-shaped damper: Parametric study and design method

2022 ◽  
Vol 252 ◽  
pp. 113550
Author(s):  
Ben Mou ◽  
Yang Zhou ◽  
Fangying Wang ◽  
Jiming Liu
1984 ◽  
Vol 11 (3) ◽  
pp. 423-429 ◽  
Author(s):  
Malcolm J. S. Hirst

This paper presents the results of a parametric study into the thermal loading of concrete bridges by solar radiation. All results were obtained using a computer model calibrated from field measurements. The model computes the loading parameters from the bridge characteristics and the standard daily records of the weather bureau. The design method given uses an effective thickness concept to find the effects of a wearing course on the temperature profile of the underlying bridge. Thermal loading depends on climate and is extremely variable. Histograms are presented, which show the frequency distributions of the loading parameters for sample bridges at three Australian sites covering a range of climatic regimes from tropical to temperate. Key words: bridges, concrete, loads, temperature, solar radiation, structural engineering, design chart.


Author(s):  
Kyosuke Ono ◽  
Masami Yamane

We proposed a design method of a flying head slider that can suppress the bouncing vibration in a near-contact regime, based on parametric study using an improved slider and contact models. At first, we numerically calculated the characteristics of contact force and adhesive force between air bearing pad and disk surface under the current small roughness conditions and found that the contact characteristics can be modeled by constant contact stiffness, a constant adhesion force and the separations of beginning and end of contact. Next we numerically computed the slider dynamics of a 2-DOF slider model by using these contact characteristics and nonlinear air-bearing stiffness. As a result, we could get the self-excited bouncing vibration whose general characteristics are more similar to the experimented results compared to our previous study. Parametric study shows that the frictional coefficient, attractive force and contact stiffness should be decreased and front and rear air-bearing stiffness and ratio of rear to front air-bearing stiffness should be increased in order to realize a stable flying slider in a smallest possible spacing. Moreover, we elucidated the effect of micro-waviness on the self-excited vibration of the slider.


1989 ◽  
Vol 16 (3) ◽  
pp. 227-238 ◽  
Author(s):  
Bruno Massicotte ◽  
Denis Beaulieu ◽  
André Picard

This paper deals with the stabilizing effect of girts and cladding on columns in light industrial buildings. The construction aspects of such systems are briefly reviewed and a description of their behavior is presented. Solutions available to determine column strength in column–girt–diaphragm systems are reviewed. The use of a finite-element-based software is proposed as the only practical way to analyze this type of structural system. Results of a large parametric study using a finite element model are presented and a method to evaluate the ultimate strength of actual columns is introduced. Finally, a simple hand design method is derived. Key words: diaphragm, design, finite element, girt, column, stability, statistics.


Author(s):  
George Iskander ◽  
Emam Soliman ◽  
Ezzeldin Yazeed Sayed-Ahmed

Built-up columns composed of two chords present an ideal design for long columns subject to high straining actions. The objective of this paper is to investigate the capacity of built-up columns composed of two-channel sections subjected to eccentric loading and propose a design method for them. A nonlinear numerical FE model is developed for these columns and verified against experimental investigation available from literature; the model includes both the geometric and materials nonlinearities along with the effect of initial imperfections. The model is used to perform a parametric study to investigate the effect of different factors on the built-up columns’ capacity. The results of the parametric study are also used to propose a design method for these columns. A limited experimental investigation is performed on two eccentrically loaded built-up columns, the results of experimental work showed good agreement with the numerical model results and the proposed design method.


1990 ◽  
Vol 112 (3) ◽  
pp. 338-345 ◽  
Author(s):  
W. S. Ghaly

An aerodynamic design method is described and used to implement a parametric study of radial turbomachinery blade design in three-dimensional subsonic flow. Given the impeller hub and shroud, the number of blades and their stacking position, the design method gives the detailed blade shape, flow, and pressure fields that would produce a prescribed tangentially averaged swirl schedule. The results from that study show that decreasing the number of blades increases the blade wrap, and that the blade loading is strongly affected by the rate of change of mean swirl along the mean streamlines. The results also show that the blade shape and the pressure field are rather sensitive to the prescribed mean swirl schedule, which suggests that, by carefully tailoring the swirl schedule, one might be able to control the blade shape and the pressure field and hence secondary flow.


1995 ◽  
Vol 117 (2) ◽  
pp. 101-107 ◽  
Author(s):  
H. Bahai ◽  
I. I. Esat ◽  
L. Rass

This paper describes a parametric study of drill string threaded connector design based on a “factorial design” method. The study is facilitated by a hybrid model which has been developed, validated, and reported previously, enabling efficient calculation of load and stress distribution along threaded connectors subjected to both axial and bending modes of loading. A parametric equation is produced where stress concentration factor is defined in terms of various geometrical variables. The equation is then utilized to carry out a constrained optimization within the feasible parameter space, and hence produce an “optimum” thread and connector design.


1989 ◽  
Author(s):  
W. S. Ghaly ◽  
C. S. Tan

An aerodynamic design method is described and used to implement a parametric study of radial turbomachinery blade design in three-dimensional subsonic flow. Given the impeller hub and shroud, the number of blades and their stacking position, the design method gives the detailed blade shape, flow and pressure fields that would produce a prescribed tangential averaged swirl schedule. The results from that study show that decreasing the number of blades increases the blade wrap, and that the blade loading is strongly affected by the rate of change of mean swirl along the mean streamlines. The results also show that the blade shape and the pressure field are rather sensitive to the prescribed mean swirl schedule which suggests that, by carefuly tailoring the swirl schedule, one might be able to control the blade shape and the pressure field and hence secondary flow.


Author(s):  
Yong Zhong ◽  
Ruxu Du

This paper presents a novel robot fish propelled by an active and compliant propulsion mechanism. The key innovation of this robot fish is the combination of an active wire-driven mechanism with a soft compliant tail to construct the active compliant propulsion mechanism, which can accomplish multi-modal swimming motions. First, the design method was proposed, the wire-driven mechanism and the compliant tail could be well designed. Second, using this robot fish experimental platform, numerous experiments were conducted to investigate the effect of different controllable parameters on cruising speed, descending speed and turning performance. These parameters include flapping frequency and amplitude of the propulsion mechanism, attack angle of the pectoral fins. A more detailed parametric study was conducted with these significant parameters to study and understand the relationship between swimming performance and various parameters. This process can help to optimize controllable parameters for superior swimming performance. Based on the parametric study, we obtained the best experimental swimming performance under optimized parameters; the maximum speed reached 2.15 BL/s (body length per second), the maximum turning speed is 269°/s the descending speed is 42 cm/s (when attack angle is 60 degree). Compared with existing robot, the new robot fish has several advantages: it is simple in structure, easy to control, and capable of high speed swimming and maneuverable swimming.


2021 ◽  
Vol 18 (5) ◽  
pp. 6239-6261
Author(s):  
Yanli Guo ◽  
◽  
Xingyou Yao ◽  

<abstract> <p>The use of cold-formed steel (CFS) channel sections with rectangular holes in the web is becoming gradually popular in building structures. However, such holes can result in sections becoming more susceptible to be distortional buckling and display lower load-carrying capacities. This paper presents a total of 44 axially-compressed tests of CFS lipped channel columns with and without rectangular web holes including different hole sizes and cross-sections. The test results show that the specimens were controlled by distortional buckling or interaction of local buckling and distortional buckling. The load-carrying capacities of specimens with rectangular holes were lower than that of specimens without hole. The load-carrying capacities of specimens were gradually decreased with the increasing of dimensions of holes. Then a nonlinear elasto-plastic finite element model (FEM) was developed and the analysis results showed good agreement with the test results. The validated FE model was used to conduct a parametric study involving 16 FEM to investigate the effects of the section, the dimension of the hole, and the number of holes on the ultimate strength of such channels. Furthermore, the formulas to predict the distortional buckling coefficient were developed for the section with holes by using the verified FEM. Finally, the tests and parametric study results were compared against the distortional buckling design strengths calculated in accordance with the developed method. The comparison results show that the proposed design method closely predict the load carrying capacity of CFS channel sections with rectangular web holes.</p> </abstract>


2018 ◽  
Vol 217 ◽  
pp. 04004
Author(s):  
Le-Onn Keong ◽  
Choe-Yung Teoh

Various parameters of rubber brake pad tribology will affect the braking performance of a rim brake system of a bicycle. Out of those, three main parameters are contact length of brake pad, surface topology of friction surface, and the thickness of rim brake pad. the goals of this study are to improve the braking performance of rim brakes to have better friction performance while retaining its simplicity of manufacturing and to investigate the effect on friction performance through the modifications of external dimensions and surface topology of rim brakes. Moreover, through this study, it can reveal which topology modifications of the rubber brake pad will have the most significance effect towards friction performance. Experimental measurement is used to obtain the friction properties and then parametric study was carried out numerically to obtain the braking performance of the rubber brake pad. the parametric study was simulated in ANSYS Transient Structural analysis. Taguchi design method was used for quantitatively identifying the right inputs and parameter levels. the results showed that smaller groove and smaller width contribute to higher friction performance. Stress concentration occurs at the edge of groove; hence, by reducing number of groove, it allows higher braking force to be generated. Location of groove concentration appears to have insignificance effect to the friction performance. Through the topology modifications, it improves the braking performance by 3%. As for external dimension, thick rubber brake pad will not demonstrate any improvement and longer contact length will demonstrate higher friction force. However, it has to be bounded by the practicality of the dimension. Upon modifications at the external dimension, it has an improvement of 64% in braking performance.


Sign in / Sign up

Export Citation Format

Share Document