Measuring the thermal energy performance gap of labelled residential buildings in Switzerland

Energy Policy ◽  
2020 ◽  
Vol 137 ◽  
pp. 111085 ◽  
Author(s):  
Stefano Cozza ◽  
Jonathan Chambers ◽  
Martin K. Patel
2021 ◽  
Vol 945 (1) ◽  
pp. 012066
Author(s):  
Nadzhratul Husna ◽  
Syed Ahmad Farhan ◽  
Mohamed Mubarak Abdul Wahab ◽  
Nasir Shafiq ◽  
Muhammad Taufiq Sharif ◽  
...  

Abstract Malaysia is located in the equator, with a hot and humid climate. The highest temperature recorded during the day was 39 °C, which leads to discomfort among building occupants, in particular, residential buildings, where indoor thermal comfort is of a higher priority compared to other types of buildings. Hence, the thermal performance of the residential roof assembly needs to be improved to lower the indoor temperature and, accordingly, maintain the level of indoor thermal comfort. In view of the need to improve the thermal performance, a silica-aerogel-incorporated rigid board roof insulation material for residential buildings was developed using kapok fibre, high density polyethylene (HDPE) and silica aerogel. The thermal conductivity of the material was measured. The sample with 4 wt. % and 5 wt. % of silica aerogel content obtained the lowest thermal conductivity of 0.04 W/mK. Silica aerogel content of above 4 wt. % did not result in further reduction of the thermal conductivity. Therefore, it can be concluded that the optimum silica aerogel content for the sample was 4 wt. %. Building-Information-Modelling (BIM)based thermal-energy performance evaluation of the material was performed by generating temperature and cooling load data using Integrated Environmental Solution-Virtual Environment to validate the thermal-energy performance of the material, by installing the material within the roof assembly of a residential BIM. Findings indicate that the material can potentially be employed in the future as a roof insulation material to maintain the level of indoor thermal comfort among residential building occupants.


2021 ◽  
Author(s):  
Kaitlin Paige Carroll

This study assesses the performance gap between actual energy performance and desired energy performance outcomes for a case study of 19 LEED-certified multi-unit residential buildings in the Greater Toronto Area. The study examines 1) how accurately design-stage energy modelling predicts actual energy use, 2) how much variation of energy performance can be seen between buildings of the same level of certification, and 3) the key contributing factors of this performance gap. Using EUI as the basis of comparison, trend analysis was carried out. It was determined that a performance gap between modelled and actual building energy use does exist. When compared to a larger sample of existing buildings, the case study buildings show no real improvement, on average. Regression models revealed no strong correlation between LEED Level or LEED EAc1 credits and reduced EUIs.


2018 ◽  
Vol 7 (4.3) ◽  
pp. 331
Author(s):  
O. Vasilenko ◽  
O. Shkrehal ◽  
O. Kletska ◽  
A. Onyshchenko ◽  
S. Voznenko

It is important for a modern consumer of thermal energy to know and be able to reduce the consumption of thermal energy, for which purpose an energy audit should be conducted. Today, three types of energy audit of residential buildings are used in Ukraine. The first one is development of the energy performance certificate of the building. The obtained energy performance certificate will give an idea of the level of thermal losses of the building and identify the main areas where measures to reduce the consumption of energy resources should be taken. The second method involves carrying out experimental studies to determine the class of air permeability of enclosing structures, which also makes it possible to assess the level of heat losses of the building and the condition of the ventilation system of the building. The third type of energy audit involves carrying out thermal imaging of the building envelope for the subsequent analysis of infrared images. A methodological approach has been developed for processing multiple infrared images. An energy inspection of a residential house has been conducted on the basis of which an energy performance certificate was compiled. The premises of the residential building have been tested for air permeability. Considering the main types of energy audit, its advantages and disadvantages have been determined both for the consumer and for the employees who conduct the audit.  


2014 ◽  
Vol 935 ◽  
pp. 48-51
Author(s):  
Xin Zhi Gong ◽  
Yasunori Akashi ◽  
Daisuke Sumiyoshi

Primary energy reduction and energy efficiency improvement are important targets to be achieved in every society and in residential buildings in particular. An energy-efficient and low-emissions solid oxide fuel cell (SOFC) cogeneration system is a promising electric and thermal energy generation technology for implementation in future residential buildings. This paper aims to analyze the energy performance in terms of primary energy demand and its reduction rate when SOFC cogeneration system is used in residential buildings. This study outlines SOFC cogeneration system and its simulation method, and then develops a standard family model for simulation under cold weather condition in China and selected Beijing city as an example, and finally compares them with traditional power and heat generation system based on gas and electricity. The results show that SOFC cogeneration system is an energy-efficient alternative power and thermal energy cogeneration technology for cold climatic cities such as Beijing, and can offer a large reduction rate (about 15.8% in winter) of primary energy demand in residential buildings. This study also finds that the significant reductions in primary energy demand of SOFC system result for the periods with air temperature decreasing.


2021 ◽  
Vol 25 (1) ◽  
pp. 610-620
Author(s):  
Violeta Motuzienė ◽  
Vilūnė Lapinskienė ◽  
Genrika Rynkun ◽  
Jonas Bielskus

Abstract Implementing provisions of the EPBD all Member States require to provide EPC (Energy Performance Certificate) when buildings are c onstructed, sold or rented. The purpose of the certificate is to compare buildings’ performance and inform the end-users. However, quite many mismatches and discrepancies could be found when comparing actual energy consumption with the once declared by the EPC. This mismatch of energy demand is known as Energy Performance Gap (EPG). It was analysed by different researchers on national levels. In the study, an overall overview of the high-performance buildings in Lithuania is performed and EPG is analysed using statistical indicators. Analysis has shown that for class A the EPG varies from −101 % to +77 %. More buildings are found to have a positive Energy Performance Gap. For class A+ and A++ variations are within a narrower interval: from +18 to 76 % and from +23 to 77 % accordingly. It confirms the findings in the other countries that very high-energy performance buildings tend to consume more than predicted. Also it is confirmed that despite differences in national certification methodologies, the same problem (just of different scale) exists and EPC schemes need revisions.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012143
Author(s):  
Stefano Cozza ◽  
Jonathan Chambers ◽  
Martin K. Patel

Abstract This work deals with the Energy Performance Gap (EPG) in buildings, defined as the difference between actual and theoretical energy consumption. This paper investigates how to close the EPG of existing buildings in Switzerland, by which measures, until when, and at which costs. To address these questions an extensive literature review was conducted combined with qualitative interviews in order to better understand practitioners’ experience and to support the findings from the literature. Several approaches have been found to reduce the EPG. These include both measures to make the building consume as expected and to arrive at a more accurate calculation of the theoretical consumption. We highlight the most relevant solutions for the Swiss context.


2021 ◽  
Vol 945 (1) ◽  
pp. 012067
Author(s):  
Syed Ahmad Farhan ◽  
Nasir Shafiq ◽  
Nadzhratul Husna ◽  
Azni Zain-Ahmed ◽  
Mohamed Mubarak Abdul Wahab ◽  
...  

Abstract Residential roof assemblies in tropical countries, such as Malaysia, are exposed to intense solar radiation throughout the day all-year round due to the high altitude of the sun path as well as the horizontal orientation and high position of the roof in relation to other components of the building envelope. Residential buildings typically employ a lightweight pitched roof with roof tiles and an attic space above a ceiling board. Diurnal heat transfer into the building through the roof assembly can be minimized by reflecting heat at the roof surface via the application of white paint on high-albedo roof tiles as well as resisting heat via installation of bulk rafter insulation within the roof assembly. However, their adoption will have an influence on the nocturnal heat transfer and, accordingly, the resultant thermal-energy performance. Hence, thermal-energy performances of high-albedo roof tiles and bulk rafter insulation were compared to develop an energy-efficient pitched residential roof assembly that is capable of minimizing diurnal heat transfer into the building with less obstruction of the nocturnal heat transfer in the opposite direction. Evaluation of thermal-energy performance was performed on a Building Information Model, which either adopts, solely, the application of white paint on high-albedo roof tiles, or, in amalgamation with, the installation of bulk rafter insulation within the roof assembly. The simulation projected that the application of white paint on high-albedo roof tiles can generate annual energy savings of 13.14 % and, when adopted in amalgamation with the installation of bulk rafter insulation within the roof assembly, 13.91 %.


2021 ◽  
Author(s):  
Kaitlin Paige Carroll

This study assesses the performance gap between actual energy performance and desired energy performance outcomes for a case study of 19 LEED-certified multi-unit residential buildings in the Greater Toronto Area. The study examines 1) how accurately design-stage energy modelling predicts actual energy use, 2) how much variation of energy performance can be seen between buildings of the same level of certification, and 3) the key contributing factors of this performance gap. Using EUI as the basis of comparison, trend analysis was carried out. It was determined that a performance gap between modelled and actual building energy use does exist. When compared to a larger sample of existing buildings, the case study buildings show no real improvement, on average. Regression models revealed no strong correlation between LEED Level or LEED EAc1 credits and reduced EUIs.


Sign in / Sign up

Export Citation Format

Share Document