scholarly journals Thermal-Energy Performance of High-Albedo Roof Tiles and Bulk Rafter Insulation in Residential Roof in the Tropical Climate

2021 ◽  
Vol 945 (1) ◽  
pp. 012067
Author(s):  
Syed Ahmad Farhan ◽  
Nasir Shafiq ◽  
Nadzhratul Husna ◽  
Azni Zain-Ahmed ◽  
Mohamed Mubarak Abdul Wahab ◽  
...  

Abstract Residential roof assemblies in tropical countries, such as Malaysia, are exposed to intense solar radiation throughout the day all-year round due to the high altitude of the sun path as well as the horizontal orientation and high position of the roof in relation to other components of the building envelope. Residential buildings typically employ a lightweight pitched roof with roof tiles and an attic space above a ceiling board. Diurnal heat transfer into the building through the roof assembly can be minimized by reflecting heat at the roof surface via the application of white paint on high-albedo roof tiles as well as resisting heat via installation of bulk rafter insulation within the roof assembly. However, their adoption will have an influence on the nocturnal heat transfer and, accordingly, the resultant thermal-energy performance. Hence, thermal-energy performances of high-albedo roof tiles and bulk rafter insulation were compared to develop an energy-efficient pitched residential roof assembly that is capable of minimizing diurnal heat transfer into the building with less obstruction of the nocturnal heat transfer in the opposite direction. Evaluation of thermal-energy performance was performed on a Building Information Model, which either adopts, solely, the application of white paint on high-albedo roof tiles, or, in amalgamation with, the installation of bulk rafter insulation within the roof assembly. The simulation projected that the application of white paint on high-albedo roof tiles can generate annual energy savings of 13.14 % and, when adopted in amalgamation with the installation of bulk rafter insulation within the roof assembly, 13.91 %.

Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 200 ◽  
Author(s):  
Laurina C. Felius ◽  
Mohamed Hamdy ◽  
Fredrik Dessen ◽  
Bozena Dorota Hrynyszyn

Improving the energy efficiency of existing buildings by implementing building automation control strategies (BACS) besides building envelope and energy system retrofitting has been recommended by the Energy Performance of Buildings Directive (EPBD) 2018. This paper investigated this recommendation by conducting a simulation-based optimization to explore cost-effective retrofitting combinations of building envelope, energy systems and BACS measures in-line with automation standard EN 15232. Two cases (i.e., a typical single-family house and apartment block) were modeled and simulated using IDA Indoor Climate and Energy (IDA-ICE). The built-in optimization tool, GenOpt, was used to minimize energy consumption as the single objective function. The associated difference in life cycle cost, compared to the reference design, was calculated for each optimization iteration. Thermal comfort of the optimized solutions was assessed to verify the thermal comfort acceptability. Installing an air source heat pump had a greater energy-saving potential than reducing heat losses through the building envelope. Implementing BACS achieved cost-effective energy savings up to 24%. Energy savings up to 57% were estimated when BACS was combined with the other retrofitting measures. Particularly for compact buildings, where the potential of reducing heat losses through the envelope is limited, the impact of BACS increased. BACS also improved the thermal comfort.


2021 ◽  
Vol 945 (1) ◽  
pp. 012066
Author(s):  
Nadzhratul Husna ◽  
Syed Ahmad Farhan ◽  
Mohamed Mubarak Abdul Wahab ◽  
Nasir Shafiq ◽  
Muhammad Taufiq Sharif ◽  
...  

Abstract Malaysia is located in the equator, with a hot and humid climate. The highest temperature recorded during the day was 39 °C, which leads to discomfort among building occupants, in particular, residential buildings, where indoor thermal comfort is of a higher priority compared to other types of buildings. Hence, the thermal performance of the residential roof assembly needs to be improved to lower the indoor temperature and, accordingly, maintain the level of indoor thermal comfort. In view of the need to improve the thermal performance, a silica-aerogel-incorporated rigid board roof insulation material for residential buildings was developed using kapok fibre, high density polyethylene (HDPE) and silica aerogel. The thermal conductivity of the material was measured. The sample with 4 wt. % and 5 wt. % of silica aerogel content obtained the lowest thermal conductivity of 0.04 W/mK. Silica aerogel content of above 4 wt. % did not result in further reduction of the thermal conductivity. Therefore, it can be concluded that the optimum silica aerogel content for the sample was 4 wt. %. Building-Information-Modelling (BIM)based thermal-energy performance evaluation of the material was performed by generating temperature and cooling load data using Integrated Environmental Solution-Virtual Environment to validate the thermal-energy performance of the material, by installing the material within the roof assembly of a residential BIM. Findings indicate that the material can potentially be employed in the future as a roof insulation material to maintain the level of indoor thermal comfort among residential building occupants.


2018 ◽  
Vol 7 (4.3) ◽  
pp. 331
Author(s):  
O. Vasilenko ◽  
O. Shkrehal ◽  
O. Kletska ◽  
A. Onyshchenko ◽  
S. Voznenko

It is important for a modern consumer of thermal energy to know and be able to reduce the consumption of thermal energy, for which purpose an energy audit should be conducted. Today, three types of energy audit of residential buildings are used in Ukraine. The first one is development of the energy performance certificate of the building. The obtained energy performance certificate will give an idea of the level of thermal losses of the building and identify the main areas where measures to reduce the consumption of energy resources should be taken. The second method involves carrying out experimental studies to determine the class of air permeability of enclosing structures, which also makes it possible to assess the level of heat losses of the building and the condition of the ventilation system of the building. The third type of energy audit involves carrying out thermal imaging of the building envelope for the subsequent analysis of infrared images. A methodological approach has been developed for processing multiple infrared images. An energy inspection of a residential house has been conducted on the basis of which an energy performance certificate was compiled. The premises of the residential building have been tested for air permeability. Considering the main types of energy audit, its advantages and disadvantages have been determined both for the consumer and for the employees who conduct the audit.  


2019 ◽  
Vol 111 ◽  
pp. 03035 ◽  
Author(s):  
Raimo Simson ◽  
Endrik Arumägi ◽  
Kalle Kuusk ◽  
Jarek Kurnitski

In the member states of the European Union (EU), nearly-Zero Energy Buildings (nZEB) are becoming mandatory building practice in 2021. It is stated, that nZEB should be cost-optimal and the energy performance levels should be re-defined after every five years. We conducted cost-optimality analyses for two detached houses, one terraced house and one apartment building in Estonia. The analysis consisted on actual construction cost data collection based on bids of variable solutions for building envelope, air tightness, windows, heat supply systems and local renewable energy production options. For energy performance analysis we used dynamic simulation software IDA-ICE. To assess cost-effectiveness, we used Net Present Value (NPV) calculations with the assessment period of 30 years. The results for cost-optimal energy performance level for detached house with heated space of ~100 m2 was 79 kWh/(m2 a), for the larger house (~200 m2) 87 kWh/(m2 a), for terraced house with heated space of ~600 m2 71 kWh/(m2 a) and for the apartment building 103 kWh/(m2 a) of primary energy including all energy use with domestic appliances. Thus, the decrease in cost-optimal level in a five-year period was ~60% for the detached house and ~40% for the apartment building, corresponding to a shift in two EPC classes.


Buildings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 491
Author(s):  
Jorge González ◽  
Carlos Alberto Pereira Soares ◽  
Mohammad Najjar ◽  
Assed N. Haddad

Linking Building Information Modelling and Building Energy Modelling methodologies appear as a tool for the energy performance analysis of a dwelling, being able to build the physical model via Autodesk Revit and simulating the energy modeling with its complement Autodesk Insight. A residential two-story house was evaluated in five different locations within distinct climatic zones to reduce its electricity demand. Experimental Design is used as a methodological tool to define the possible arrangement of results emitted via Autodesk Insight that exhibits the minor electric demand, considering three variables: Lighting efficiency, Plug-Load Efficiency, and HVAC systems. The analysis concluded that while the higher the efficiency of lighting and applications, the lower the electric demand. In addition, the type of climate and thermal characteristics of the materials that conform to the building envelope have significant effects on the energetic performance. The adjustment of different energetic measures and its comparison with other climatic zones enable decision-makers to choose the best combination of variables for developing strategies to lower the electric demand towards energy-efficient buildings.


2019 ◽  
Vol 14 (2) ◽  
pp. 109-136
Author(s):  
Chaitali Basu ◽  
Virendra Kumar Paul ◽  
M.G. Matt Syal

The energy performance of an existing building is the amount of energy consumed to meet various needs associated with the standardized use of a building and is reflected in one or more indicators known as Building Energy Performance Indicators (EnPIs). These indicators are distributed amongst six main factors influencing energy consumption: climate, building envelope, building services and energy systems, building operation and maintenance, occupants' activities and behaviour, and indoor environmental quality. Any improvement made to either the existing structure or the physical and operational upgrade of a building system that enhances energy performance is considered an energy efficiency retrofit. The main goal of this research is to support the implementation of multifamily residential building energy retrofits through expert knowledge consensus on EnPIs for energy efficiency retrofit planning. The research methodology consists of a comprehensive literature review which has identified 35 EnPIs for assessing performance of existing residential buildings, followed by a ranking questionnaire survey of experts in the built-environment to arrive at a priority listing of indicators based on mean rank. This was followed by concordance analysis and measure of standard deviation. A total of 280 experts were contacted globally for the survey, and 106 completed responses were received resulting in a 37.85% response rate. The respondents were divided into two groups for analysis: academician/researchers and industry practitioners. The primary outcome of the research is a priority listing of EnPIs based on the quantitative data from the knowledge-base of experts from these two groups. It is the outcome of their perceptions of retrofitting factors and corresponding indicators. A retrofit strategy consists of five phases for retrofitting planning in which the second phase comprises an energy audit and performance assessment and diagnostics. This research substantiates the performance assessment process through the identification of EnPIs.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 206
Author(s):  
Zixuan Chen ◽  
Ahmed W. A. Hammad ◽  
Imriyas Kamardeen ◽  
Assed Haddad

Windows account for a significant proportion of the total energy lost in buildings. The interaction of window type, Window-to-Wall Ratio (WWR) scheduled and window placement height influence natural lighting and heat transfer through windows. This is a pressing issue for nontropical regions considering their high emissions and distinct climatic characteristics. A limitation exists in the adoption of common simulation-based optimisation approaches in the literature, which are hardly accessible to practitioners. This article develops a numerical-based window design optimisation model using a common Building Information Modelling (BIM) platform adopted throughout the industry, focusing on nontropical regions of Australia. Three objective functions are proposed; the first objective is to maximise the available daylight, and the other two emphasize undesirable heat transfer through windows in summer and winter. The developed model is tested on a case study located in Sydney, Australia, and a set of Pareto-optimum solutions is obtained. Through the use of the proposed model, energy savings of up to 8.57% are achieved.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 895 ◽  
Author(s):  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Argun Paragamyan ◽  
Anna Pellegrino ◽  
Vincenzo Corrado

Directive 2010/31/EU promotes the refurbishment of existing buildings to change them into nearly zero-energy buildings (nZEBs). Within this framework, it is of crucial importance to guarantee the best trade-off between energy performance and indoor environmental quality (IEQ). The implications of a global refurbishment scenario on thermal and visual comfort are assessed in this paper pertaining to an existing office building. The retrofit actions applied to achieve the nZEB target consist of a combination of envelope and technical building systems refurbishment measures, involving both HVAC and lighting. Energy and comfort calculations were carried out through dynamic simulation using Energy Plus and DIVA, for the thermal and visual performance assessments, respectively. The results point out that energy retrofit actions on the building envelope would lead to significant improvements in the thermal performance, regarding both energy savings (−37% of the annual primary energy for heating) and thermal comfort. However, a daylighting reduction would occur with a consequent higher electricity demand for lighting (36%). The research presents a detailed approach applicable to further analyses aimed at optimizing the energy efficiency measures in order to reduce the imbalance between visual and thermal comfort and to ensure the best performance in both domains.


2020 ◽  
Vol 10 (17) ◽  
pp. 5888
Author(s):  
WoonSeong Jeong ◽  
Wei Yan ◽  
Chang Joon Lee

This study demonstrates the research and development of a visualization method called thermal performance simulation. The objective of this study is providing the results of thermal performance simulation results into building information modeling (BIM) models, displaying a series of thermal performance results, and enabling stakeholders to use the BIM tool as a common user interface in the early design stage. This method utilizes a combination of object-oriented physical modeling (OOPM) and BIM. To implement the suggested method, a specific BIM authoring tool called the application programming interface (API) was adopted, as well as an external database to maintain the thermal energy performance results from the OOPM tool. Based on this method, this study created a prototype called the thermal energy performance visualization (TEPV). The TEPV translates the information from the external database to the thermal energy performance indicator (TEPI) parameter in the BIM tool. In the TEPI, whenever BIM models are generated for building design, the thermal energy performance results are visualized by color-coding the building components in the BIM models. Visualization of thermal energy performance results enables non-engineers such as architects to explicitly inspect the simulation results. Moreover, the TEPV facilitates architects using BIM as an interface in building design to visualize building thermal energy performance, enhancing their design production at the early design stages.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6068
Author(s):  
Remy Carlier ◽  
Mohammad Dabbagh ◽  
Moncef Krarti

This paper evaluates the potential energy savings when switchable insulation systems (SIS) are applied to walls of residential buildings located in Belgium and other locations in Europe. The study considers two low-energy prototypical dwellings (an apartment and a detached house) that are representative of post-2010 constructions and renovations in Belgium. Using an 3R2C-based analysis tool, the performance of both dwellings is evaluated with static and dynamic wall insulation systems. First, the switchable insulating system is described along with its associated simple 2-step rule-based control strategy. Then the modeling strategy and simulation analysis tools are presented. In Belgium, it was found that SIS-integrated walls allow energy savings up to 3.7% for space heating and up to 98% for cooling. Moreover, it was found that to further reduce the energy consumption of SIS-integrated buildings in various European climates, thermal mass placement needs to be considered. By optimizing the placement and the parameters of the various wall layers, it is possible to increase the space heating savings by up to a factor of 4 and those of cooling by up to a factor of 2.5.


Sign in / Sign up

Export Citation Format

Share Document