scholarly journals ECO-SAFE CHEMICOTHERMAL CONVERSION OF INDUSTRIAL GRAPHITE WASTE TO EXFOLIATED GRAPHENE AND EVALUATION AS ENGINEERED ADSORBENT TO REMOVE TOXIC TEXTILE DYES

2021 ◽  
pp. 100072
Author(s):  
Selvaraj Ambika ◽  
Valasani Srilekha
2019 ◽  
Vol 13 (4) ◽  
pp. 268-276
Author(s):  
Sridevi Ayla ◽  
Monika Kallubai ◽  
Suvarnalatha Devi Pallipati ◽  
Golla Narasimha

Background:Laccase, a multicopper oxidoreductase (EC: 1.10.3.2), is a widely used enzyme in bioremediation of textile dye effluents. Fungal Laccase is preferably used as a remediating agent in the treatment and transformation of toxic organic pollutants. In this study, crude laccase from a basidiomycetes fungus, Phanerochaete sordida, was able to decolorize azo, antroquinone and indigoid dyes. In addition, interactions between dyes and enzyme were analysed using molecular docking studies.Methods:In this work, a white rot basidiomycete’s fungus, Phanerochaete sordida, was selected from forest soil isolates of Eastern Ghats, and Tirumala and lignolytic enzymes production was assayed after 7 days of incubation. The crude enzyme was checked for decolourisation of various synthetic textile dyes (Vat Brown, Acid Blue, Indigo, Reactive Blue and Reactive Black). Molecular docking studies were done using Autodock-4.2 to understand the interactions between dyes and enzymes.Results:Highest decolourisation efficiency was achieved with the crude enzyme in case of vat brown whereas the lowest decolourisation efficiency was achieved in Reactive blue decolourisation. Similar results were observed in their binding affinity with lignin peroxidase of Phanerochaete chrysosporium through molecular docking approach.Conclusion:Thus, experimental results and subsequent in silico validation involving an advanced remediation approach would be useful to reduce time and cost in other similar experiments.


2021 ◽  
Author(s):  
Joong Tark Han ◽  
Joon Young Cho ◽  
Jeong Hoon Kim

The thermal stability of solution-exfoliated graphene oxide (GO) in air is one of the most important physical properties influencing its potential applications. To date, majority of the GO prepared by...


RSC Advances ◽  
2021 ◽  
Vol 11 (14) ◽  
pp. 8290-8305
Author(s):  
Md Shipan Mia ◽  
Ping Yao ◽  
Xiaowei Zhu ◽  
Xue Lei ◽  
Tieling Xing ◽  
...  

In this study, waste silk fabrics were modified with tea-polyphenols then loaded with Fe2+ for degradation of dyes.


2021 ◽  
Vol 287 ◽  
pp. 129263
Author(s):  
Siva Sankar Nemala ◽  
Sujitha Ravulapalli ◽  
Purnendu Kartikay ◽  
Ramu Banavath ◽  
Sudhanshu Mallick ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 607
Author(s):  
Carolina Hermida-Merino ◽  
Fernando Pardo ◽  
Gabriel Zarca ◽  
João M. M. Araújo ◽  
Ane Urtiaga ◽  
...  

In this work, polymeric membranes functionalized with ionic liquids (ILs) and exfoliated graphene nanoplatelets (xGnP) were developed and characterized. These membranes based on graphene ionanofluids (IoNFs) are promising materials for gas separation. The stability of the selected IoNFs in the polymer membranes was determined by thermogravimetric analysis (TGA). The morphology of membranes was characterized using scanning electron microscope (SEM) and interferometric optical profilometry (WLOP). SEM results evidence that upon the small addition of xGnP into the IL-dominated environment, the interaction between IL and xGnP facilitates the migration of xGnP to the surface, while suppressing the interaction between IL and Pebax®1657. Fourier transform infrared spectroscopy (FTIR) was also used to determine the polymer–IoNF interactions and the distribution of the IL in the polymer matrix. Finally, the thermodynamic properties and phase transitions (polymer–IoNF) of these functionalized membranes were studied using differential scanning calorimetry (DSC). This analysis showed a gradual decrease in the melting point of the polyamide (PA6) blocks with a decrease in the corresponding melting enthalpy and a complete disappearance of the crystallinity of the polyether (PEO) phase with increasing IL content. This evidences the high compatibility and good mixing of the polymer and the IoNF.


Sign in / Sign up

Export Citation Format

Share Document