An investigation on the physical, chemical and ecotoxicological characteristics of particulate matter emitted from light-duty vehicles

2009 ◽  
Vol 157 (8-9) ◽  
pp. 2320-2327 ◽  
Author(s):  
Elias Vouitsis ◽  
Leonidas Ntziachristos ◽  
Panayiotis Pistikopoulos ◽  
Zissis Samaras ◽  
Loukia Chrysikou ◽  
...  
2017 ◽  
Vol 171 (4) ◽  
pp. 227-238
Author(s):  
Piotr BIELACZYC ◽  
Andrzej SZCZOTKA ◽  
Joseph WOODBURN

Emissions of particulate matter associated with the use of light-duty vehicles are an increasingly important topic, with more and more political attention focused on this issue. Now that direct injection Diesel engines feature DPFs, particle emissions from other engine types operating on other fuels are also of great interest. This paper discusses the phenomenon in general, briefly reviews worldwide legislation and emissions limits and presents the results of a laboratory test programme measuring the particle emissions from a range of vehicles. The experimental programme showed that the engine/fuel type has a greater impact on particle emissions than the test conditions.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Sofia Caumo ◽  
Roy E. Bruns ◽  
Pérola C. Vasconcellos

This study presents the emission profiles of n-alkanes for different vehicular sources in two Brazilian cities. Atmospheric particulate matter was collected in São Paulo (Southeast) and in Salvador (Northeast) to determine n-alkanes. The sites were impacted by bus emissions and heavy and light-duty vehicles. The objective of the present study is to attempt to differentiate the profile of n-alkane emissions for particulate matter (PM) collected at different sites. PM concentrations ranged between 73 and 488 µg m−3, and the highest concentration corresponded to a tunnel for light and heavy duty vehicles. At sites where diesel-fueled vehicles are dominant, the n-alkanes show a unimodal distribution, which is different from the bimodal profile observed in the literature. Carbon preference index values corresponded to anthropogenic sources for most of the sites, as expected, but Cmax varied comparing to literature and a source signature was difficult to observe. The main sources to air pollution were indicated by principal component analysis (PCA). For PCA, a receptor model often used as an exploratory tool to identify the major sources of air pollutant emissions, the principal factors were attributed to mixed sources and to bus emissions. Chromatograms of four specific samples showed distinct profiles of unresolved complex mixtures (UCM), indicating different contributions of contamination from petroleum or fossil fuel residues, which are unable to resolve by gas chromatography. The UCM area seemed higher in samples collected at sites with the abundance of heavy vehicles.


1997 ◽  
Vol 31 (5) ◽  
pp. 1302-1307 ◽  
Author(s):  
Patricia A. Mulawa ◽  
Steven H. Cadle ◽  
Kenneth Knapp ◽  
Roy Zweidinger ◽  
Richard Snow ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 661
Author(s):  
Alexandros T. Zachiotis ◽  
Evangelos G. Giakoumis

A Monte Carlo simulation methodology is suggested in order to assess the impact of ambient wind on a vehicle’s performance and emissions. A large number of random wind profiles is generated by implementing the Weibull and uniform statistical distributions for wind speed and direction, respectively. Wind speed data are drawn from eight cities across Europe. The vehicle considered is a diesel-powered, turbocharged, light-commercial vehicle and the baseline trip is the worldwide harmonized light-duty vehicles WLTC cycle. A detailed engine-mapping approach is used as the basis for the results, complemented with experimentally derived correction coefficients to account for engine transients. The properties of interest are (engine-out) NO and soot emissions, as well as fuel and energy consumption and CO2 emissions. Results from this study show that there is an aggregate increase in all properties, vis-à-vis the reference case (i.e., zero wind), if ambient wind is to be accounted for in road load calculation. Mean wind speeds for the different sites examined range from 14.6 km/h to 24.2 km/h. The average increase in the properties studied, across all sites, ranges from 0.22% up to 2.52% depending on the trip and the property (CO2, soot, NO, energy consumption) examined. Based on individual trip assessment, it was found that especially at high vehicle speeds where wind drag becomes the major road load force, CO2 emissions may increase by 28%, NO emissions by 22%, and soot emissions by 13% in the presence of strong headwinds. Moreover, it is demonstrated that the adverse effect of headwinds far exceeds the positive effect of tailwinds, thus explaining the overall increase in fuel/energy consumption as well as emissions, while also highlighting the shortcomings of the current certification procedure, which neglects ambient wind effects.


2021 ◽  
Vol 783 ◽  
pp. 147101
Author(s):  
Yanzhao Hao ◽  
Shunxi Deng ◽  
Zhaowen Qiu ◽  
Zhenzhen Lu ◽  
Hui Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document