scholarly journals The COVID-19 pandemic reshapes the plastic pollution research – A comparative analysis of plastic pollution research before and during the pandemic

2021 ◽  
pp. 112634
Author(s):  
Qiang Wang ◽  
Min Zhang ◽  
Rongrong Li
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kristian Syberg ◽  
Annemette Palmqvist ◽  
Farhan R. Khan ◽  
Jakob Strand ◽  
Jes Vollertsen ◽  
...  

Abstract Plastic pollution is considered one of today’s major environmental problems. Current land-based monitoring programs typically rely on beach litter data and seldom include plastic pollution further inland. We initiated a citizen science project known as the Mass Experiment inviting schools throughout The Danish Realm (Denmark, Greenland and the Faeroe Islands) to collect litter samples of and document plastic pollution in 8 different nature types. In total approximately 57,000 students (6–19 years) collected 374,082 plastic items in 94 out of 98 Danish municipalities over three weeks during fall 2019. The Mass Experiment was the first scientific survey of plastic litter to cover an entire country. Here we show how citizen science, conducted by students, can be used to fill important knowledge gaps in plastic pollution research, increase public awareness, establish large scale clean-up activities and subsequently provide information to political decision-makers aiming for a more sustainable future.


2021 ◽  
Author(s):  
silvia morgana ◽  
Barbara Casentini ◽  
Stefano Amalfitano

<p>This study aims to assess the environmental impact of discarded face masks, that are a source of emerging concern as indicated by most recent literature, although still little investigated. Herein we evaluated micro- and nanoplastic particles that can be released from face mask once subject to environmental conditions. Exposure to simulated-low shear forces demonstrated to be effective in breaking and fragmenting face mask tissue into smaller debris. Even at low shear energy densities, a single mask could release in water thousands of microplastic fibers and up to 10^11 submicrometric particles. The latter were quantified using flow cytometry that was proven to be a promising technique for nanoplastic counting, thus improving our understanding on distribution and fate of NPs still representing a great analytical challenge in plastic pollution research. </p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica Melvin ◽  
Madeline Bury ◽  
Justine Ammendolia ◽  
Charles Mather ◽  
Max Liboiron

Shoreline surveys are an accessible and common method for monitoring plastic pollution in aquatic environments. Their results are critical to well-informed pollution mitigation efforts. Here, we show that three environmental variables: (1) coarse sediment, (2) accumulations of organic material, and (3) snow and ice are dramatically underrepresented by existing shoreline plastic pollution research efforts. We reviewed 361 published shoreline surveys, encompassing 3,284 sample sites, and found that only 4% of sites included coarse sediment, only one study described sampling organic material for plastic, and only 2.5% of sites are sampled in the presence of ice or snow. The relative absence of these environmental variables may stem from the tailoring of shoreline survey guidelines to a narrow range of shoreline environments. These three features influence plastic deposition and retention on shorelines, and their underrepresentation signals a need to recalibrate research efforts towards better methodological reporting, and regional representation and relevance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paul Vriend ◽  
H. Hidayat ◽  
J. van Leeuwen ◽  
M. R. Cordova ◽  
N. P. Purba ◽  
...  

Several studies have suggested Indonesia to be among the top plastic polluting countries globally. Data on the presence and amounts of plastic pollution are required to help design effective plastic reduction and mitigation strategies. Research quantifying plastic pollution in Indonesia has picked up in recent years. However, a lack of central coordination in this research has led to research output with different goals, methods, and data formats. In this study we present a meta-analysis of studies published on plastic pollution in Indonesia to uncover gaps and biases in current research, and to use these insights to suggest ways to improve future research to fill these gaps. Research gaps and biases identified include a clear preference for marine research, and a bias toward certain environmental compartments within the marine, riverine, and terrestrial systems that have easy to apply methods. Units of measurement used to express results vary greatly between studies, making it difficult to compare data effectively. Nevertheless, we identify polypropylene (PP) and polyethylene variants (PE, HDPE, LDPE) to be among the most frequently found polymers in both macro- and microplastic pollution in Indonesia, though polymer identification is lacking in a large part of the studies. Plastic research is mostly done on Java (59% of the studies). We recommend research methods used to quantify plastic pollution to be harmonized. Moreover, we recommend a shift in focus of research toward the riverine and terrestrial environments and a shift of focus of environmental compartments analyzed within these systems, an increase in spatial coverage of research across Indonesia, and lastly, a larger focus on polymer characterization. With these changes we envision future research which can aid with the design of more effective and targeted reduction and mitigation strategies.


2021 ◽  
Author(s):  
Paul Vriend ◽  
H. Hidayat ◽  
Judith van Leeuwen ◽  
M.R. Cordova ◽  
N.P. Purba ◽  
...  

2021 ◽  
Author(s):  
silvia morgana ◽  
Barbara Casentini ◽  
Stefano Amalfitano

<p>This study aims to assess the environmental impact of discarded face masks, that are a source of emerging concern as indicated by most recent literature, although still little investigated. Herein we evaluated micro- and nanoplastic particles that can be released from face mask once subject to environmental conditions. Exposure to simulated-low shear forces demonstrated to be effective in breaking and fragmenting face mask tissue into smaller debris. Even at low shear energy densities, a single mask could release in water thousands of microplastic fibers and up to 10^11 submicrometric particles. The latter were quantified using flow cytometry that was proven to be a promising technique for nanoplastic counting, thus improving our understanding on distribution and fate of NPs still representing a great analytical challenge in plastic pollution research. </p>


2021 ◽  
Author(s):  
Paul Vriend ◽  
Hidayat Hidayat ◽  
Reza Cordova ◽  
Noir. P. Purba ◽  
Ansje Lohr ◽  
...  

&lt;p&gt;Observational and modeling studies have suggested that Indonesia among the top plastic polluting countries globally. Data on the presence of plastic pollution are crucial to designing effective plastic reduction and mitigation strategies. Research quantifying plastic pollution in Indonesia has increased in recent years. However, most plastic research to date has been done with different goals, methods, and data formats. In this study, we present a meta-analysis of 85 studies published on plastic pollution in Indonesia to uncover gaps and biases in current research, and to use these insights to suggest ways to improve future research to fill these gaps. Research gaps and biases identified include a clear preference for marine research, and a bias towards certain environmental compartments within the marine, riverine, and terrestrial ecosystems, which are compartments that are easier to quantify such as riverbanks and beaches. Moreover, we identify polypropylene (PP) and polyethylene variants (HDPE, LDPE, PE) to be among the most frequently found polymers in both macro- and microplastic pollution, though polymer identification is lacking in most studies. Plastic research is mostly done on Java (57%). We recommend a shift in ecosystem focus of research towards the riverine and terrestrial environments, and a shift of focus of environmental compartments analyzed within these ecosystems. Moreover, we recommend an increase in spatial coverage across Indonesia of research, a larger focus on polymer characterization, and lastly, the harmonization of methods used to quantify plastic. With these changes, we envision future research that can aid with the design of effective reduction and mitigation strategies.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document