scholarly journals Critical Gaps in Shoreline Plastics Pollution Research

2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica Melvin ◽  
Madeline Bury ◽  
Justine Ammendolia ◽  
Charles Mather ◽  
Max Liboiron

Shoreline surveys are an accessible and common method for monitoring plastic pollution in aquatic environments. Their results are critical to well-informed pollution mitigation efforts. Here, we show that three environmental variables: (1) coarse sediment, (2) accumulations of organic material, and (3) snow and ice are dramatically underrepresented by existing shoreline plastic pollution research efforts. We reviewed 361 published shoreline surveys, encompassing 3,284 sample sites, and found that only 4% of sites included coarse sediment, only one study described sampling organic material for plastic, and only 2.5% of sites are sampled in the presence of ice or snow. The relative absence of these environmental variables may stem from the tailoring of shoreline survey guidelines to a narrow range of shoreline environments. These three features influence plastic deposition and retention on shorelines, and their underrepresentation signals a need to recalibrate research efforts towards better methodological reporting, and regional representation and relevance.

2019 ◽  
Vol 124 (3) ◽  
pp. 411-422 ◽  
Author(s):  
James S Borrell ◽  
Ghudaina Al Issaey ◽  
Darach A Lupton ◽  
Thomas Starnes ◽  
Abdulrahman Al Hinai ◽  
...  

AbstractBackground and AimsSouthern Arabia is a global biodiversity hotspot with a high proportion of endemic desert-adapted plants. Here we examine evidence for a Pleistocene climate refugium in the southern Central Desert of Oman, and its role in driving biogeographical patterns of endemism.MethodsDistribution data for seven narrow-range endemic plants were collected systematically across 195 quadrats, together with incidental and historic records. Important environmental variables relevant to arid coastal areas, including night-time fog and cloud cover, were developed for the study area. Environmental niche models using presence/absence data were built and tuned for each species, and spatial overlap was examined.Key ResultsA region of the Jiddat Al Arkad reported independent high model suitability for all species. Examination of environmental data across southern Oman indicates that the Jiddat Al Arkad displays a regionally unique climate with higher intra-annual stability, due in part to the influence of the southern monsoon. Despite this, the relative importance of environmental variables was highly differentiated among species, suggesting that characteristic variables such as coastal fog are not major cross-species predictors at this scale.ConclusionsThe co-occurrence of a high number of endemic study species within a narrow monsoon-influenced region is indicative of a refugium with low climate change velocity. Combined with climate analysis, our findings provide strong evidence for a southern Arabian Pleistocene refugium in Oman’s Central Desert. We suggest that this refugium has acted as an isolated temperate and mesic island in the desert, resulting in the evolution of these narrow-range endemic flora. Based on the composition of species, this system may represent the northernmost remnant of a continuous belt of mesic vegetation formerly ranging from Africa to Asia, with close links to the flora of East Africa. This has significant implications for future conservation of endemic plants in an arid biodiversity hotspot.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kristian Syberg ◽  
Annemette Palmqvist ◽  
Farhan R. Khan ◽  
Jakob Strand ◽  
Jes Vollertsen ◽  
...  

Abstract Plastic pollution is considered one of today’s major environmental problems. Current land-based monitoring programs typically rely on beach litter data and seldom include plastic pollution further inland. We initiated a citizen science project known as the Mass Experiment inviting schools throughout The Danish Realm (Denmark, Greenland and the Faeroe Islands) to collect litter samples of and document plastic pollution in 8 different nature types. In total approximately 57,000 students (6–19 years) collected 374,082 plastic items in 94 out of 98 Danish municipalities over three weeks during fall 2019. The Mass Experiment was the first scientific survey of plastic litter to cover an entire country. Here we show how citizen science, conducted by students, can be used to fill important knowledge gaps in plastic pollution research, increase public awareness, establish large scale clean-up activities and subsequently provide information to political decision-makers aiming for a more sustainable future.


2021 ◽  
Author(s):  
silvia morgana ◽  
Barbara Casentini ◽  
Stefano Amalfitano

<p>This study aims to assess the environmental impact of discarded face masks, that are a source of emerging concern as indicated by most recent literature, although still little investigated. Herein we evaluated micro- and nanoplastic particles that can be released from face mask once subject to environmental conditions. Exposure to simulated-low shear forces demonstrated to be effective in breaking and fragmenting face mask tissue into smaller debris. Even at low shear energy densities, a single mask could release in water thousands of microplastic fibers and up to 10^11 submicrometric particles. The latter were quantified using flow cytometry that was proven to be a promising technique for nanoplastic counting, thus improving our understanding on distribution and fate of NPs still representing a great analytical challenge in plastic pollution research. </p>


2006 ◽  
Vol 66 (1a) ◽  
pp. 25-33 ◽  
Author(s):  
I. B. Cardone ◽  
S. E. Lima-Junior ◽  
R. Goitein

The purpose of this study is to ascertain whether variations in the limnological parameters of the Corumbataí river resulting from the discharge of a variety of wastes into its waters may be responsible for spatial shifts in the diet and capture of the armored catfish Hypostomus strigaticeps (Regan, 1907). Individuals were collected over a period of two years from two sites with similar physical, albeit distinct limnological characteristics. As a whole, the environmental variables (temperature, pH, dissolved oxygen, electrical conductivity, and total coliforms and fecal coliforms) of the two sites were found to vary significantly. The food items found in the guts of these armored catfish (sediments, diatoms, fungi hyphae, chlorophytes, cyanophytes and non-identified material) ranked differently in samples from the two sites. In the more polluted (site B), diatoms and chlorophytes ranked higher in the diet than in that of individuals caught in the more preserved location (site A). This fact may be related to the greater amount of organic material found at site B, which provides favorable environmental conditions for such algae and, consequently, for algivorous fishes. Even so, fewer fish were captured at site B than at site A, suggesting that although food is more abundant in the more polluted site, its limnological conditions appear, on the whole, to be less beneficial than the conditions at site A.


2021 ◽  
Author(s):  
Karthikeyan Perumal ◽  
Subagunasekar Muthuramalingam

Abstract Purpose: Microplastics (MPs) are ubiquitous, persistent pollutants that are reported in abundance in all environments and biota. This review highlights the identification, distribution and concentration of microplastics in all aquatic environments and biota in the India region which is one of the least studied with only forty-four papers published on microplastics during 2013-2020 in the web of science. Results: The present review focuses on the concentration of microplastics in different aquatic environments such as 3096 items/kg in marine sediments, 106 items/kg in biota, 59 items/L in seawater, 175 items/kg in sea salt, 33.9 items/L in lake water, 336 items/kg in lake sediments, 288 pieces/m3 in river water, and 328 items/kg in river sediments. Conclusion: Consequently, we studied the distribution and occurrence of pollution from MPs in coastal and freshwater environments such as rivers, lakes and biota. Therefore, we propose extending studies in all the above areas of microplastics knowing that there are many unique aquatic habitats and species that are yet unexplored. For future research, we suggest new methods for sampling MPs in all marine ecosystems and biota. Assessing research in each of these ways will allow suggesting a microplastic threshold level and devising control initiatives to minimize plastic consumption and its eventual hazard to the aquatic ecosystem. Moreover enforcing strict laws, enhancing legal initiatives, well-planned comprehensive waste management policies and spontaneous public engagement are essential to create awareness of marine plastic pollution and reduce the adverse effects of land-based plastics.


2020 ◽  
Author(s):  
Tim van Emmerik ◽  
Anna Schwarz

&lt;p&gt;Macroplastic (&gt;0.5 cm) pollution in aquatic environments is an emerging environmental risk, as it negatively impacts ecosystems, endangers aquatic species, and causes economic damage. Rivers are known to play a crucial role in transporting land-based plastic waste into the world&amp;#8217;s oceans. However, rivers and their ecosystems are also directly affected by plastic pollution. To better quantify global plastic pollution pathways and to effectively reduce sources and risks, a thorough understanding of riverine macroplastic sources, transport, fate and effects is crucial. In our presentation, we discuss the current scientific state on macroplastic in rivers and evaluate existing knowledge gaps. We discuss the origin and fate of riverine plastics, including processes and factors influencing macroplastic transport and its spatiotemporal variation. Moreover, we present an overview of monitoring and modeling efforts to characterize riverine plastic transport and give examples of typical values from around the world (van Emmerik &amp; Schwarz, 2020). With our presentation, we aim to present a comprehensive overview of riverine macroplastic research to date and suggest multiple ways forward for future research.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;van Emmerik, T, Schwarz, A. Plastic debris in rivers. WIREs Water. 2020; 7:e1398. https://doi.org/10.1002/wat2.1398&lt;/p&gt;


2021 ◽  
Vol 9 ◽  
Author(s):  
Paul Vriend ◽  
H. Hidayat ◽  
J. van Leeuwen ◽  
M. R. Cordova ◽  
N. P. Purba ◽  
...  

Several studies have suggested Indonesia to be among the top plastic polluting countries globally. Data on the presence and amounts of plastic pollution are required to help design effective plastic reduction and mitigation strategies. Research quantifying plastic pollution in Indonesia has picked up in recent years. However, a lack of central coordination in this research has led to research output with different goals, methods, and data formats. In this study we present a meta-analysis of studies published on plastic pollution in Indonesia to uncover gaps and biases in current research, and to use these insights to suggest ways to improve future research to fill these gaps. Research gaps and biases identified include a clear preference for marine research, and a bias toward certain environmental compartments within the marine, riverine, and terrestrial systems that have easy to apply methods. Units of measurement used to express results vary greatly between studies, making it difficult to compare data effectively. Nevertheless, we identify polypropylene (PP) and polyethylene variants (PE, HDPE, LDPE) to be among the most frequently found polymers in both macro- and microplastic pollution in Indonesia, though polymer identification is lacking in a large part of the studies. Plastic research is mostly done on Java (59% of the studies). We recommend research methods used to quantify plastic pollution to be harmonized. Moreover, we recommend a shift in focus of research toward the riverine and terrestrial environments and a shift of focus of environmental compartments analyzed within these systems, an increase in spatial coverage of research across Indonesia, and lastly, a larger focus on polymer characterization. With these changes we envision future research which can aid with the design of more effective and targeted reduction and mitigation strategies.


2017 ◽  
Vol 15 (4) ◽  
pp. 509-518 ◽  
Author(s):  
Simone Pereira Casali ◽  
André Cordeiro Alves Dos Santos ◽  
Patrícia Bortoletto de Falco ◽  
Maria do Carmo Calijuri

Saxitoxins are a class of toxins produced by at least two groups of evolutionarily distant organisms (cyanobacteria and dinoflagellates). While the toxicity of these toxins is relatively well characterized, to date little is known about their drivers and ecological functions, especially in lower latitude tropical and subtropical freshwater ecosystems. In the present study, we aimed to obtain a better understanding of the main drivers of saxitoxin concentrations in aquatic environments. We investigated the relationships among saxitoxin concentrations in a mesotrophic subtropical reservoir dominated by the cyanobacteria Cylindrospermopsis raciborskii with physical, chemical and biological water variables. The highest saxitoxin concentrations were 0.20 μg·L−1, which occurred in the samples with the highest densities of C. raciborskii (maximum of 4.3 × 104 org·mL−1) and the highest concentration of dissolved nutrients (nitrate from 0.2 to 0.8 μg·L−1, ortophosphate from 0.3 to 8.5 μg·L−1). These correlations were confirmed by statistical analyses. However, the highest saxitoxin relative concentrations (per trichome) were associated with lower C. raciborskii densities, suggesting that saxitoxin production or the selection of saxitoxin-producing strains was associated with the adaptation of this species to conditions of stress. Our results indicate that C. raciborskii toxin yields vary depending on the enrichment conditions having potential implications for reservoir management.


Sign in / Sign up

Export Citation Format

Share Document