Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing

2013 ◽  
Vol 41 ◽  
pp. 231-238 ◽  
Author(s):  
Gang Zhao ◽  
Brett A. Bryan ◽  
Darran King ◽  
Zhongkui Luo ◽  
Enli Wang ◽  
...  
2021 ◽  
Author(s):  
Sara Cucchiaro ◽  
Guido Paliaga ◽  
Daniel J. Fallu ◽  
Ben R. Pears ◽  
Kevin Walsh ◽  
...  

<p>Geomorphometric information can be exploited to study the most extensive and common landforms that humans have ever produced: agricultural terraces. An understanding of these historical ecosystems can only be determined through in-depth knowledge of their origin, evolution, and current state in the landscape. These factors can ultimately assist in the future preservation of such landforms in a world increasingly affected by anthropogenic activities. High-resolution topographic (HRT) techniques allow the mapping and characterization of geomorphological features with wide-ranging perspectives at multiple scales. From HRT surveys, it is possible to produce high-resolution Digital Terrain Models (DTMs) to extract important geomorphometric parameters such as topographic curvature, to identify terrace edges, even if abandoned or covered by uncontrolled vegetation. By using riser bases as well as terrace edges (riser tops) and through the computation of minimum curvature, it is possible to obtain environmentally useful information on these agricultural systems such as terrace soil thickness and volumes. The quantification of terrace volumes can provide new benchmarks for soil erosion models, new perspectives for land and stakeholders for terrace management in terms of natural hazard and offer a measure of the effect of these agricultural systems on soil organic carbon (SOC) sequestration. This work aims to realize and test an innovative and rapid methodological workflow to estimate the minimum anthropogenic reworked and moved soil of terrace systems in different landscapes. This aspect of new technology and its application to terrace soil-systems has not been fully explored in the literature. We start with remote terrace mapping at a large scale (using Airborne Laser Scanning) and then utilize more detailed HRT surveys (i.e., Structure from Motion and Terrestrial Laser Scanning) to extract geomorphological features, from which the original theoretical slope-surface of terrace systems were derived. These last elements were compared with in-field sedimentological recording obtained from the excavations across the study sites to assess the nature of sub-surface topographies. The results of this work have produced accurate DTMs of Difference (DoD) for three terrace sites in central Europe in Italy and Belgium. The utilization of ground-truthing through field excavation and sampling has confirmed the reliability of the methodology used across a range of sites with very specific terrace morphologies, and in each case has confirmed the nature of the reconstructed, theoretical original slope. Differences between actual and theoretical terraces from DTM and excavation evidence have been used to estimate the minimum soil volumes and masses used to remould slopes. Moreover, geomorphometric analysis through indices such as sediment connectivity permitted also to quantify the volume of sediment transported downstream, with the associated and mobilized C, after a collapsed terrace. The quantification of terrace soil volumes provides extremely useful standards for further multi-disciplinary analysis on the terrace sediments themselves, aiding physical geographers, geoarchaeologists, palaeo-environmentalists, and landscape historians in the understanding of terrace systems and the impact of agricultural processes on the landscape.</p>


2020 ◽  
Vol 12 (5) ◽  
pp. 783 ◽  
Author(s):  
Wenjie Lin ◽  
Yu Li

With finer spatial scale, high-resolution images provide complex, spatial, and massive information on the earth’s surface, which brings new challenges to remote sensing segmentation methods. In view of these challenges, finding a more effective segmentation model and parallel processing method is crucial to improve the segmentation accuracy and process efficiency of large-scale high-resolution images. To this end, this study proposed a minimum spanning tree (MST) model integrated into a regional-based parallel segmentation method. First, an image was decomposed into several blocks by regular tessellation. The corresponding homogeneous regions were obtained using the minimum heterogeneity rule (MHR) partitioning technique in a multicore parallel processing mode, and the initial segmentation results were obtained by the parallel block merging method. On this basis, a regionalized fuzzy c-means (FCM) method based on master-slave parallel mode was proposed to achieve fast and optimal segmentation. The proposed segmentation approach was tested on high-resolution images. The results from the qualitative assessment, quantitative evaluation, and parallel analysis verified the feasibility and validity of the proposed method.


2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Mariela Gabioux ◽  
Vladimir Santos da Costa ◽  
Joao Marcos Azevedo Correia de Souza ◽  
Bruna Faria de Oliveira ◽  
Afonso De Moraes Paiva

Results of the basic model configuration of the REMO project, a Brazilian approach towards operational oceanography, are discussed. This configuration consists basically of a high-resolution eddy-resolving, 1/12 degree model for the Metarea V, nested in a medium-resolution eddy-permitting, 1/4 degree model of the Atlantic Ocean. These simulations performed with HYCOM model, aim for: a) creating a basic set-up for implementation of assimilation techniques leading to ocean prediction; b) the development of hydrodynamics bases for environmental studies; c) providing boundary conditions for regional domains with increased resolution. The 1/4 degree simulation was able to simulate realistic equatorial and south Atlantic large scale circulation, both the wind-driven and the thermohaline components. The high resolution simulation was able to generate mesoscale and represent well the variability pattern within the Metarea V domain. The BC mean transport values were well represented in the southwestern region (between Vitória-Trinidade sea mount and 29S), in contrast to higher latitudes (higher than 30S) where it was slightly underestimated. Important issues for the simulation of the South Atlantic with high resolution are discussed, like the ideal place for boundaries, improvements in the bathymetric representation and the control of bias SST, by the introducing of a small surface relaxation. In order to make a preliminary assessment of the model behavior when submitted to data assimilation, the Cooper & Haines (1996) method was used to extrapolate SSH anomalies fields to deeper layers every 7 days, with encouraging results.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chris E. Blenkinsopp ◽  
Paul M. Bayle ◽  
Daniel C. Conley ◽  
Gerd Masselink ◽  
Emily Gulson ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41597-021-00874-2.


2021 ◽  
Vol 13 (15) ◽  
pp. 2877
Author(s):  
Yu Tao ◽  
Siting Xiong ◽  
Susan J. Conway ◽  
Jan-Peter Muller ◽  
Anthony Guimpier ◽  
...  

The lack of adequate stereo coverage and where available, lengthy processing time, various artefacts, and unsatisfactory quality and complexity of automating the selection of the best set of processing parameters, have long been big barriers for large-area planetary 3D mapping. In this paper, we propose a deep learning-based solution, called MADNet (Multi-scale generative Adversarial u-net with Dense convolutional and up-projection blocks), that avoids or resolves all of the above issues. We demonstrate the wide applicability of this technique with the ExoMars Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) 4.6 m/pixel images on Mars. Only a single input image and a coarse global 3D reference are required, without knowing any camera models or imaging parameters, to produce high-quality and high-resolution full-strip Digital Terrain Models (DTMs) in a few seconds. In this paper, we discuss technical details of the MADNet system and provide detailed comparisons and assessments of the results. The resultant MADNet 8 m/pixel CaSSIS DTMs are qualitatively very similar to the 1 m/pixel HiRISE DTMs. The resultant MADNet CaSSIS DTMs display excellent agreement with nested Mars Reconnaissance Orbiter Context Camera (CTX), Mars Express’s High-Resolution Stereo Camera (HRSC), and Mars Orbiter Laser Altimeter (MOLA) DTMs at large-scale, and meanwhile, show fairly good correlation with the High-Resolution Imaging Science Experiment (HiRISE) DTMs for fine-scale details. In addition, we show how MADNet outperforms traditional photogrammetric methods, both on speed and quality, for other datasets like HRSC, CTX, and HiRISE, without any parameter tuning or re-training of the model. We demonstrate the results for Oxia Planum (the landing site of the European Space Agency’s Rosalind Franklin ExoMars rover 2023) and a couple of sites of high scientific interest.


Author(s):  
Meysam Goodarzi ◽  
Darko Cvetkovski ◽  
Nebojsa Maletic ◽  
Jesús Gutiérrez ◽  
Eckhard Grass

AbstractClock synchronization has always been a major challenge when designing wireless networks. This work focuses on tackling the time synchronization problem in 5G networks by adopting a hybrid Bayesian approach for clock offset and skew estimation. Furthermore, we provide an in-depth analysis of the impact of the proposed approach on a synchronization-sensitive service, i.e., localization. Specifically, we expose the substantial benefit of belief propagation (BP) running on factor graphs (FGs) in achieving precise network-wide synchronization. Moreover, we take advantage of Bayesian recursive filtering (BRF) to mitigate the time-stamping error in pairwise synchronization. Finally, we reveal the merit of hybrid synchronization by dividing a large-scale network into local synchronization domains and applying the most suitable synchronization algorithm (BP- or BRF-based) on each domain. The performance of the hybrid approach is then evaluated in terms of the root mean square errors (RMSEs) of the clock offset, clock skew, and the position estimation. According to the simulations, in spite of the simplifications in the hybrid approach, RMSEs of clock offset, clock skew, and position estimation remain below 10 ns, 1 ppm, and 1.5 m, respectively.


Sign in / Sign up

Export Citation Format

Share Document