scholarly journals Design and implementation of a general software library for using NSGA-II with SWAT for multi-objective model calibration

2016 ◽  
Vol 84 ◽  
pp. 112-120 ◽  
Author(s):  
Mehmet B. Ercan ◽  
Jonathan L. Goodall
Author(s):  
J. Sebastian Hernandez-Suarez ◽  
A. Pouyan Nejadhashemi ◽  
Kalyanmoy Deb

2021 ◽  
Vol 16 (3) ◽  
pp. 372-384
Author(s):  
E.B. Xu ◽  
M.S. Yang ◽  
Y. Li ◽  
X.Q. Gao ◽  
Z.Y. Wang ◽  
...  

Aiming at the problem that the downtime is simply assumed to be constant and the limited resources are not considered in the current selective maintenance of the series-parallel system, a three-objective selective maintenance model for the series-parallel system is established to minimize the maintenance cost, maximize the probability of completing the next task and minimize the downtime. The maintenance decision-making model and personnel allocation model are combined to make decisions on the optimal length of each equipment’s rest period, the equipment to be maintained during the rest period and the maintenance level. For the multi-objective model established, the NSGA-III algorithm is designed to solve the model. Comparing with the NSGA-II algorithm that only considers the first two objectives, it is verified that the designed multi-objective model can effectively reduce the downtime of the system.


2015 ◽  
Vol 1 (3) ◽  
pp. 397
Author(s):  
Jalal A. Sultan ◽  
Ban A. Mitras ◽  
Raghad M. Jasim

The Bed Allocation Problem (BAP) is NP-complete and always high dimensional. In this paper, a bi-objective decision aiding model based on queuing theory is introduced for allocation of beds in a hospital. The problem is modeled as an M/PH/n queue. The objectives include maximizing the patient admission rate human resources, in particular, maximization of the nursing work hours. The proposed model is solved by using Non-dominated Sorting Genetic Algorithm-II (NSGA-II), which is a very effective algorithm for solving multi-objective optimization problems and finding optimal Pareto front. The paper describes an application of the model, dealing with a public hospital in Iraq. The results related that multi-objective model was presented suitable framework for bed allocation and optimum use.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1898 ◽  
Author(s):  
Nay Myo Lin ◽  
Xin Tian ◽  
Martine Rutten ◽  
Edo Abraham ◽  
José M. Maestre ◽  
...  

This paper presents an extended Model Predictive Control scheme called Multi-objective Model Predictive Control (MOMPC) for real-time operation of a multi-reservoir system. The MOMPC approach incorporates the non-dominated sorting genetic algorithm II (NSGA-II), multi-criteria decision making (MCDM) and the receding horizon principle to solve a multi-objective reservoir operation problem in real time. In this study, a water system is simulated using the De Saint Venant equations and the structure flow equations. For solving multi-objective optimization, NSGA-II is used to find the Pareto-optimal solutions for the conflicting objectives and a control decision is made based on multiple criteria. Application is made to an existing reservoir system in the Sittaung river basin in Myanmar, where the optimal operation is required to compromise the three operational objectives. The control objectives are to minimize the storage deviations in the reservoirs, to minimize flood risks at a downstream vulnerable place and to maximize hydropower generation. After finding a set of candidate solutions, a couple of decision rules are used to access the overall performance of the system. In addition, the effect of the different decision-making methods is discussed. The results show that the MOMPC approach is applicable to support the decision-makers in real-time operation of a multi-reservoir system.


2017 ◽  
Vol 63 (4) ◽  
pp. 103-121 ◽  
Author(s):  
S. A. Hosseini ◽  
A. Akbarpour ◽  
H. Ahmadi ◽  
B. Aminnejad

AbstractUnderground spaces having features such as stability, resistance, and being undetected can play a key role in reducing vulnerability by relocating infrastructures and manpower. In recent years, the competitive business environment and limited resources have mostly focused on the importance of project management in order to achieve its objectives. In this research, in order to find the best balance among cost, time, and quality related to construction projects using reinforced concrete in underground structures, a multi-objective mathematical model is proposed. Several executive approaches have been considered for project activities and these approaches are analyzed via several factors. It is assumed that cost, time, and quality of activities in every defined approach can vary between compact and normal values, and the goal is to find the best execution for activities, achieving minimum cost and the maximum quality for the project. To solve the proposed multi-objective model, the genetic algorithm NSGA-II is used.


2011 ◽  
Vol 15 (4) ◽  
pp. 1167-1183 ◽  
Author(s):  
T. H. M. Rientjes ◽  
B. U. J. Perera ◽  
A. T. Haile ◽  
P. Reggiani ◽  
L. P. Muthuwatta

Abstract. In this study lake levels of Lake Tana are simulated at daily time step by solving the water balance for all inflow and outflow processes. Since nearly 62% of the Lake Tana basin area is ungauged a regionalisation procedure is applied to estimate lake inflows from ungauged catchments. The procedure combines automated multi-objective calibration of a simple conceptual model and multiple regression analyses to establish relations between model parameters and catchment characteristics. A relatively small number of studies are presented on Lake Tana's water balance. In most studies the water balance is solved at monthly time step and the water balance is simply closed by runoff contributions from ungauged catchments. Studies partly relied on simple ad-hoc procedures of area comparison to estimate runoff from ungauged catchments. In this study a regional model is developed that relies on principles of similarity of catchments characteristics. For runoff modelling the HBV-96 model is selected while multi-objective model calibration is by a Monte Carlo procedure. We aim to assess the closure term of Lake Tana's water balance, to assess model parameter uncertainty and to evaluate effectiveness of a multi-objective model calibration approach to make hydrological modeling results more plausible. For the gauged catchments, model performance is assessed by the Nash-Sutcliffe coefficient and Relative Volumetric Error and resulted in satisfactory to good performance for six, large catchments. The regional model is validated and indicated satisfactory to good performance in most cases. Results show that runoff from ungauged catchments is as large as 527 mm per year for the simulation period and amounts to approximately 30% of Lake Tana stream inflow. Results of daily lake level simulation over the simulation period 1994–2003 show a water balance closure term of 85 mm per year that accounts to 2.7% of the total lake inflow. Lake level simulations are assessed by Nash Sutcliffe (0.91) and Relative Volume Error (2.71%) performance measures.


Transport ◽  
2021 ◽  
Vol 0 (0) ◽  
pp. 1-13
Author(s):  
Joydeep Dutta ◽  
Partha Sarathi Barma ◽  
Anupam Mukherjee ◽  
Samarjit Kar ◽  
Tanmay De ◽  
...  

This paper proposes a multi-objective Green Vehicle Routing Problem (G-VRP) considering two types of vehicles likely company-owned vehicle and third-party logistics in the imprecise environment. Focusing only on one objective, especially the distance in the VRP is not always right in the sustainability point of view. Here we present a bi-objective model for the G-VRP that can address the issue of the emission of GreenHouse Gases (GHGs). We also consider the demand as a rough variable. This paper uses the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to solve the proposed model. Finally, it uses Multicriteria Optimization and Compromise Solution (abbreviation in Serbian – VIKOR) method to determine the best alternative from the Pareto front.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 184 ◽  
Author(s):  
Penghong Wang ◽  
Fei Xue ◽  
Hangjuan Li ◽  
Zhihua Cui ◽  
Jinjun Chen

Locating node technology, as the most fundamental component of wireless sensor networks (WSNs) and internet of things (IoT), is a pivotal problem. Distance vector-hop technique (DV-Hop) is frequently used for location node estimation in WSN, but it has a poor estimation precision. In this paper, a multi-objective DV-Hop localization algorithm based on NSGA-II is designed, called NSGA-II-DV-Hop. In NSGA-II-DV-Hop, a new multi-objective model is constructed, and an enhanced constraint strategy is adopted based on all beacon nodes to enhance the DV-Hop positioning estimation precision, and test four new complex network topologies. Simulation results demonstrate that the precision performance of NSGA-II-DV-Hop significantly outperforms than other algorithms, such as CS-DV-Hop, OCS-LC-DV-Hop, and MODE-DV-Hop algorithms.


Sign in / Sign up

Export Citation Format

Share Document