Improved cellulase expression in diploid yeast strains enhanced consolidated bioprocessing of pretreated corn residues

2019 ◽  
Vol 131 ◽  
pp. 109382 ◽  
Author(s):  
Steffi A Davison ◽  
Nadine T Keller ◽  
Willem H van Zyl ◽  
Riaan den Haan
2014 ◽  
Vol 80 (21) ◽  
pp. 6677-6684 ◽  
Author(s):  
Youyun Liang ◽  
Tong Si ◽  
Ee Lui Ang ◽  
Huimin Zhao

ABSTRACTSeveral yeast strains have been engineered to express different cellulases to achieve simultaneous saccharification and fermentation of lignocellulosic materials. However, successes in these endeavors were modest, as demonstrated by the relatively low ethanol titers and the limited ability of the engineered yeast strains to grow using cellulosic materials as the sole carbon source. Recently, substantial enhancements to the breakdown of cellulosic substrates have been observed when lytic polysaccharide monooxygenases (LPMOs) were added to traditional cellulase cocktails. LPMOs are reported to cleave cellulose oxidatively in the presence of enzymatic electron donors such as cellobiose dehydrogenases. In this study, we coexpressed LPMOs and cellobiose dehydrogenases with cellobiohydrolases, endoglucanases, and β-glucosidases inSaccharomyces cerevisiae. These enzymes were secreted and docked onto surface-displayed miniscaffoldins through cohesin-dockerin interaction to generate pentafunctional minicellulosomes. The enzymes on the miniscaffoldins acted synergistically to boost the degradation of phosphoric acid swollen cellulose and increased the ethanol titers from our previously achieved levels of 1.8 to 2.7 g/liter. In addition, the newly developed recombinant yeast strain was also able to grow using phosphoric acid swollen cellulose as the sole carbon source. The results demonstrate the promise of the pentafunctional minicellulosomes for consolidated bioprocessing by yeast.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 714 ◽  
Author(s):  
Nicoletta Gronchi ◽  
Lorenzo Favaro ◽  
Lorenzo Cagnin ◽  
Silvia Brojanigo ◽  
Valentino Pizzocchero ◽  
...  

The use of solid starchy waste streams to produce value-added products, such as fuel ethanol, is a priority for the global bio-based economy. Despite technological advances, bioethanol production from starch is still not economically competitive. Large cost-savings can be achieved through process integration (consolidated bioprocessing, CBP) and new amylolytic microbes that are able to directly convert starchy biomass into fuel in a single bioreactor. Firstly, CBP technology requires efficient fermenting yeast strains to be engineered for amylase(s) production. This study addressed the selection of superior yeast strains with high fermentative performances to be used as recipient for future CBP engineering of fungal amylases. Twenty-one newly isolated wild-type Saccharomyces cerevisiae strains were screened at 30 °C in a simultaneous saccharification and fermentation (SSF) set up using starchy substrates at high loading (20% w/v) and the commercial amylases cocktail STARGEN™ 002. The industrial yeast Ethanol Red™ was used as benchmark. A cluster of strains produced ethanol levels (up to 118 g/L) significantly higher than those of Ethanol Red™ (about 109 g/L). In particular, S. cerevisiae L20, selected for a scale-up process into a 1-L bioreactor, confirmed the outstanding performance over the industrial benchmark, producing nearly 101 g/L ethanol instead of 94 g/L. As a result, this strain can be a promising CBP host for heterologous expression of fungal amylases towards the design of novel and efficient starch-to-ethanol routes.


2018 ◽  
Vol 39 (4) ◽  
pp. 474-482
Author(s):  
Hoang Thi Le Thuong ◽  
Nguyen Quang Hao ◽  
Tran Thi Thuy

Eight yeast strains (denoted as D1 to D8) were isolated from samples of natural fermented pineapple. Strain D8 showed highest alcoholic production at low pH and special aroma of pineapple has been chosen for further study. Taxonomic characterization of strain D8 using morphological, biochemical and molecular biological studies confirmed that strain D8  belong to Saccharomycetaceae family, Saccharomycetales order and Saccharomyces cerevisiae species. Therefore, we named this strain as Saccharomyces cerevisiae D8 for further study on Brandy production from pineapple. Citation: Hoang Thi Le Thuong, Nguyen Quang Hao, Tran Thi Thuy, 2017. Taxonomic characterization and identification of Saccharomyces cerevisiae D8 for brandy production from pineapple. Tap chi Sinh hoc, 39(4): 474- 482. DOI: 10.15625/0866-7160/v39n4.10864.*Corresponding author: [email protected] Received 5 December 2016, accepted 12 August 2017


2019 ◽  
Vol 7 (12) ◽  
pp. 121-127
Author(s):  
Taras Lysak ◽  
◽  
Serhii Oliinichuk ◽  
Olha Koval ◽  
◽  
...  

2015 ◽  
pp. 209-216 ◽  
Author(s):  
Eduardo P. Borges ◽  
Mário L. Lopes ◽  
Claudemir Bernardino ◽  
Alexandre Godoy ◽  
Fernando E. Ré ◽  
...  

The authors’ work started in fermentation in 1977 and in the 1980’s into sugar production and cane quality. Statistical analysis was a key factor for the success of improving yield in ethanol and sugar production as well as cane quality. Adaption of methods for industrial laboratories also was very important in relation to yield and in reduction of sugar losses in the factory. Methodologies to measure sugar losses occurring through degradation in the factory (evaporation) using ion chromatography and dry substance content with a digital density meter were adapted. The fermentation yield improved from 75% in 1977 to 92% in 2014, which was possible by adapting methods for live bacterial counting within 20 min, and by controlling contamination using antimicrobial products through research in the laboratory and the industry. Since 1990 yeasts for industrial fermentation were selected by karyotyping analysis of the nuclear chromosomes and in the last seven years based on mitochondrial DNA. The last technique made the “Process Driven Selection” possible, i.e. one or several yeast strains which fit each distillery. Floc formation in carbonated beverages is not only due to the Indicator Value (discovery by SPRI research group) but also to aconitic acid and calcium under Brazilian conditions.


1996 ◽  
Vol 34 (11) ◽  
pp. 51-58 ◽  
Author(s):  
K. Chigusa ◽  
T. Hasegawa ◽  
N. Yamamoto ◽  
Y. Watanabe

Nine strains of yeasts capable of decomposing oil were isolated in order to directly treat wastewater from oil manufacturing plants with no pretreatment. The oil decomposing ability of these yeast strains was evaluated in terms of lipase activity and β-oxidation activity. Since the mixture of the isolated yeasts was superior to any single strain in the oil removal rate, a pilot plant utilizing the mixed strains was operated at the soybean oil factory. Following a one year pilot plant operation, it was found that 10,000 mgℓ−1 of hexane extracts in the raw wastewater could be reduced by yeast treatment to a concentration of about 100 mgℓ−1. This concentration was further treated by the activated sludge process to 2 mgℓ−1. The dominant yeasts in the pilot plant were found to form mycelial or pseudomycelial pellets and have low fermenting ability.


1968 ◽  
Vol 8 (5) ◽  
pp. 355-360 ◽  
Author(s):  
A. H. El-refai ◽  
I. A. El-Kady
Keyword(s):  

Genetics ◽  
2020 ◽  
Vol 215 (4) ◽  
pp. 1153-1169 ◽  
Author(s):  
Riddhiman K. Garge ◽  
Jon M. Laurent ◽  
Aashiq H. Kachroo ◽  
Edward M. Marcotte

Many gene families have been expanded by gene duplications along the human lineage, relative to ancestral opisthokonts, but the extent to which the duplicated genes function similarly is understudied. Here, we focused on structural cytoskeletal genes involved in critical cellular processes, including chromosome segregation, macromolecular transport, and cell shape maintenance. To determine functional redundancy and divergence of duplicated human genes, we systematically humanized the yeast actin, myosin, tubulin, and septin genes, testing ∼81% of human cytoskeletal genes across seven gene families for their ability to complement a growth defect induced by inactivation or deletion of the corresponding yeast ortholog. In five of seven families—all but α-tubulin and light myosin, we found at least one human gene capable of complementing loss of the yeast gene. Despite rescuing growth defects, we observed differential abilities of human genes to rescue cell morphology, meiosis, and mating defects. By comparing phenotypes of humanized strains with deletion phenotypes of their interaction partners, we identify instances of human genes in the actin and septin families capable of carrying out essential functions, but failing to fully complement the cytoskeletal roles of their yeast orthologs, thus leading to abnormal cell morphologies. Overall, we show that duplicated human cytoskeletal genes appear to have diverged such that only a few human genes within each family are capable of replacing the essential roles of their yeast orthologs. The resulting yeast strains with humanized cytoskeletal components now provide surrogate platforms to characterize human genes in simplified eukaryotic contexts.


Sign in / Sign up

Export Citation Format

Share Document